The Times Australia
The Times World News

.

Scientists have traced Earth's path through the galaxy via tiny crystals found in the crust

  • Written by Chris Kirkland, Professor of Geology, Curtin University
Scientists have traced Earth's path through the galaxy via tiny crystals found in the crust

“To see a world in a grain of sand”, the opening sentence of the poem by William Blake[1], is an oft-used phrase that also captures some of what geologists do.

We observe the composition of mineral grains, smaller than the width of a human hair. Then, we extrapolate the chemical processes they suggest to ponder the construction of our planet[2] itself.

Now, we’ve taken that minute attention to new heights, connecting tiny grains to Earth’s place in the galactic environment.

Looking out to the universe

At an even larger scale, astrophysicists seek to understand the universe and our place in it. They use laws of physics to develop models that describe the orbits of astronomical objects.

Although we may think of the planet’s surface as something shaped by processes entirely within Earth itself, our planet has undoubtedly felt the effects of its cosmic environment. This includes periodic changes in Earth’s orbit[3], variations in the Sun’s output, gamma ray bursts, and of course meteorite impacts.

Just looking at the Moon and its pockmarked surface should remind us of that, given Earth is more than 80 times more massive than its grey satellite. In fact, recent work has pointed to the importance of meteorite impacts in the production of continental crust on Earth[4], helping to form buoyant “seeds” that floated on the outermost layer of our planet in its youth.

We and our international team of colleagues have now identified a rhythm in the production of this early continental crust, and the tempo points to a truly grand driving mechanism. This work has just been published in the journal Geology[5].

A swirling spiral of blue and white glowing stars on a dark background
Residing inside the Milky Way galaxy makes it impossible to picture, but our galaxy is thought to be similar to other barred spiral galaxies, like NGC 4394. ESA/Hubble & NASA

Read more: What created the continents? New evidence points to giant asteroids[6]

The rhythm of crust production on Earth

Many rocks on Earth form from molten or semi-molten magma. This magma is derived either directly from the mantle – the predominantly solid but slowly flowing layer below the planet’s crust – or from recooking even older bits of pre-existing crust. As liquid magma cools, it eventually freezes into solid rock.

Through this cooling process of magma crystallisation, mineral grains grow and can trap elements such as uranium that decay over time and produce a sort of stopwatch, recording their age[7]. Not only that, but crystals can also trap other elements[8] that track the composition of their parental magma, like how a surname might track a person’s family.

With these two pieces of information – age and composition – we can then reconstruct a timeline of crust production. Then, we can decode its main frequencies, using the mathematical wizardry of the Fourier transform[9]. This tool basically decodes the frequency of events, much like unscrambling ingredients that have gone into the blender for a cake.

Our results from this approach suggest an approximate 200-million-year rhythm to crust production on the early Earth.

Read more: Ancient Earth had a thick, toxic atmosphere like Venus – until it cooled off and became liveable[10]

Our place in the cosmos

But there is another process with a similar rhythm. Our Solar System and the four spiral arms of the Milky Way are both spinning around the supermassive black hole at the galaxy’s centre, yet they are moving at different speeds.

The spiral arms orbit at 210 kilometres per second, while the Sun is speeding along at 240km per second, meaning our Solar System is surfing into and out of the galaxy’s arms. You can think of the spiral arms as dense regions that slow the passage of stars much like a traffic jam, which only clears further down the road (or through the arm).

Geological events on the orbit of the solar system in the Milky Way galaxy
Geological events, including major crust formation events highlighted on the transit of the Solar System through the galactic spiral arms. NASA/JPL-Caltech/ESO/R. Hurt (background image)

This model results in approximately 200 million years between each entry our Solar System makes into a spiral arm of the galaxy.

So, there seems to be a possible connection between the timing of crust production on Earth and the length of time it takes to orbit the galactic spiral arms – but why?

Strikes from the cloud

In the distant reaches of our Solar System, a cloud of icy rocky debris named the Oort cloud[11] is thought to orbit our Sun.

As the Solar System periodically moves into a spiral arm, interaction between it and the Oort cloud is proposed to dislodge material from the cloud, sending it closer to the inner Solar System. Some of this material may even strike Earth.

A glowing image of a spiral galaxy with blue arms and pale golden centre
Milky Way’s structure and Solar System’s orbit through it may be important in controlling the frequency of some large impacts on Earth, which in turn may have seeded crust production on the early Earth. jivacore/Shutterstock

Earth experiences relatively frequent impacts from the rocky bodies of the asteroid belt, which on average arrive at speeds of 15km per second. But comets ejected from the Oort cloud arrive much faster, on average 52km per second.

We argue it is these periodic high-energy impacts that are tracked by the record of crust production preserved in tiny mineral grains[12]. Comet impacts excavate huge volumes of Earth’s surface, leading to decompression melting of the mantle, not too dissimilar from popping a cork on a bottle of fizz.

This molten rock, enriched in light elements such as silicon, aluminium, sodium and potassium, effectively floats on the denser mantle. While there are many other ways to generate continental crust[13], it’s likely that impacting[14] on our early planet formed buoyant seeds of crust. Magma produced from later geological processes would adhere to those early seeds.

Harbingers of doom, or gardeners for terrestrial life?

Continental crust is vital in most of Earth’s natural cycles – it interacts with water and oxygen, forming new weathered products, hosting most metals and biological carbon.

Large meteorite impacts are cataclysmic events that can obliterate life[15]. Yet, impacts may very well have been key to the development of the continental crust we live on.

With the recent passage of interstellar asteroids[16] through the Solar System, some have even gone so far as to suggest they ferried life across the cosmos[17].

However we came to be here, it is awe-inspiring on a clear night to look up at the sky and see the stars and the structure they trace, and then look down at your feet and feel the mineral grains, rock and continental crust below – all linked through a very grand rhythm indeed.

References

  1. ^ William Blake (www.poetryfoundation.org)
  2. ^ the construction of our planet (eos.org)
  3. ^ periodic changes in Earth’s orbit (www.nature.com)
  4. ^ production of continental crust on Earth (www.nature.com)
  5. ^ in the journal Geology (doi.org)
  6. ^ What created the continents? New evidence points to giant asteroids (theconversation.com)
  7. ^ recording their age (www.gsoc.org)
  8. ^ other elements (www.nature.com)
  9. ^ Fourier transform (betterexplained.com)
  10. ^ Ancient Earth had a thick, toxic atmosphere like Venus – until it cooled off and became liveable (theconversation.com)
  11. ^ Oort cloud (solarsystem.nasa.gov)
  12. ^ tiny mineral grains (knowablemagazine.org)
  13. ^ generate continental crust (theconversation.com)
  14. ^ impacting (www.nature.com)
  15. ^ can obliterate life (theconversation.com)
  16. ^ interstellar asteroids (theconversation.com)
  17. ^ ferried life across the cosmos (www.daviddarling.info)

Read more https://theconversation.com/scientists-have-traced-earths-path-through-the-galaxy-via-tiny-crystals-found-in-the-crust-188158

Times Magazine

Understanding ITIL 4 and PRINCE2 Project Management Synergy

Key Highlights ITIL 4 focuses on IT service management, emphasising continual improvement and value creation through modern digital transformation approaches. PRINCE2 project management supports systematic planning and execution of projects wit...

What AI Adoption Means for the Future of Workplace Risk Management

Image by freepik As industrial operations become more complex and fast-paced, the risks faced by workers and employers alike continue to grow. Traditional safety models—reliant on manual oversight, reactive investigations, and standardised checklist...

From Beach Bops to Alpine Anthems: Your Sonos Survival Guide for a Long Weekend Escape

Alright, fellow adventurers and relaxation enthusiasts! So, you've packed your bags, charged your devices, and mentally prepared for that glorious King's Birthday long weekend. But hold on, are you really ready? Because a true long weekend warrior kn...

Effective Commercial Pest Control Solutions for a Safer Workplace

Keeping a workplace clean, safe, and free from pests is essential for maintaining productivity, protecting employee health, and upholding a company's reputation. Pests pose health risks, can cause structural damage, and can lead to serious legal an...

The Science Behind Reverse Osmosis and Why It Matters

What is reverse osmosis? Reverse osmosis (RO) is a water purification process that removes contaminants by forcing water through a semi-permeable membrane. This membrane allows only water molecules to pass through while blocking impurities such as...

Foodbank Queensland celebrates local hero for National Volunteer Week

Stephen Carey is a bit bananas.   He splits his time between his insurance broker business, caring for his young family, and volunteering for Foodbank Queensland one day a week. He’s even run the Bridge to Brisbane in a banana suit to raise mon...

The Times Features

Metal Roof Replacement Cost Per Square Metre in 2025: A Comprehensive Guide for Australian Homeowners

In recent years, the trend of installing metal roofs has surged across Australia. With their reputation for being both robust and visually appealing, it's easy to understand thei...

Why You’re Always Adjusting Your Bra — and What to Do Instead

Image by freepik It starts with a gentle tug, then a subtle shift, and before you know it, you're adjusting your bra again — in the middle of work, at dinner, even on the couch. I...

How to Tell If Your Eyes Are Working Harder Than They Should Be

Image by freepik Most of us take our vision for granted—until it starts to let us down. Whether it's squinting at your phone, rubbing your eyes at the end of the day, or feeling ...

Ways to Attract Tenants in a Competitive Rental Market

In the kind of rental market we’ve got now, standing out is half the battle. The other half? Actually getting someone to sign that lease. With interest rates doing backflips and ...

Top Tips for Finding the Ideal Block to Build Your Home

There’s something deeply personal and exciting about building your own home. You’re not just choosing paint colours or furniture, you’re creating a space that reflects your lifes...

The Home Buying Process Explained Step by Step

Buying a home is a thrilling milestone, but it can also feel like navigating a maze without a map. With paperwork, finances, and decisions at every turn, understanding the home-b...