The Times Australia
The Times World News

.

What created the continents? New evidence points to giant asteroids

  • Written by Tim Johnson, Associate Professor, Curtin University
What created the continents? New evidence points to giant asteroids

Earth is the only planet we know of with continents[1], the giant landmasses that provide homes to humankind and most of Earth’s biomass[2].

However, we still don’t have firm answers to some basic questions about continents: how did they come to be, and why did they form where they did?

One theory is that they were formed by giant meteorites crashing into Earth’s crust long ago. This idea[3] has been proposed several times[4], but until now there has been little evidence to support it.

In new research published in Nature[5], we studied ancient minerals from Western Australia and found tantalising clues suggesting the giant impact hypothesis might be right.

How do you make a continent?

The continents form part of the lithosphere, the rigid rocky outer shell of Earth made up of ocean floors and the continents, of which the uppermost layer is the crust.

The crust beneath the oceans is thin and made of dark, dense basaltic rock which contains only a little silica. By contrast, the continental crust is thick and mostly consists of granite, a less dense, pale-coloured, silica-rich rock that makes the continents “float”.

The internal structure of Earth. Kelvin Song / Wikimedia, CC BY[6][7]

Beneath the lithosphere sits a thick, slowly flowing mass of almost-molten rock, which sits near the top of the mantle, the layer of Earth between the crust and the core.

If part of the lithosphere is removed, the mantle beneath it will melt as the pressure from above is released. And impacts from giant meteorites – rocks from space tens or hundreds of kilometres across – are an extremely efficient way of doing exactly that!

What are the consequences of a giant impact?

Giant impacts blast out huge volumes of material almost instantaneously. Rocks near the surface will melt for hundreds of kilometres or more around the impact site. The impact also releases pressure on the mantle below, causing it to melt and produce a “blob-like” mass of thick basaltic crust.

This mass is called an oceanic plateau, similar to that beneath present-day Hawaii or Iceland. The process is a bit like what happens if you are hit hard on the head by a golf ball or pebble – the resulting bump or “egg” is like the oceanic plateau.

Read more: How rare minerals form when meteorites slam into Earth[8]

Our research shows these oceanic plateaus could have evolved to form the continents through a process known as crustal differentiation. The thick oceanic plateau formed from the impact can get hot enough at its base that it also melts, producing the kind of granitic rock that forms buoyant continental crust.

Are there other ways to make oceanic plateaus?

There are other ways oceanic plateaus can form. The thick crusts beneath Hawaii and Iceland formed not through giant impacts but “mantle plumes”, streams of hot material rising up from the edge of Earth’s metallic core, a bit like in a lava lamp. As this ascending plume reaches the lithosphere it triggers massive mantle melting to form an oceanic plateau.

So could plumes have created the continents? Based on our studies, and the balance of different oxygen isotopes in tiny grains of the mineral zircon, which is commonly found in tiny quantities in rocks from the continental crust, we don’t think so.

Zircon is the oldest known crustal material[9], and it can survive intact for billions of years. We can also determine quite precisely when it was formed, based on the decay of the radioactive uranium it contains.

What’s more, we can find out about the environment in which zircon formed by measuring the relative proportion of isotopes of oxygen[10] it contains.

We looked at zircon grains from one of the oldest surviving pieces of continental crust in the world, the Pilbara Craton in Western Australia, which started forming more than 3 billion years ago. Many of the oldest grains of zircon contained more light oxygen isotopes, which indicate shallow melting, but younger grains contain a more mantle-like balance isotopes, indicating much deeper melting.

Zircon δ18O (‰) vs age (Ma) for individual dated magmatic zircon grains from the Pilbara Craton. The horizontal grey band shows the array of δ18O in mantle zircon (5.3 +/– 0.6‰, 2 s.d.). The vertical grey bands subdivide the data into three stages, as discussed in the paper. The pink boxes represent the age of deposition of high-energy impact deposits (spherule beds) from the Pilbara Craton and more widely.

This “top-down” pattern of oxygen isotopes is what you might expect following a giant meteorite impact. In mantle plumes, by contrast, melting is a “bottom-up” process.

Sounds reasonable, but is there any other evidence?

Yes, there is! The zircons from the Pilbara Craton appear to have been formed in a handful of distinct periods, rather than continuously over time.

Except for the earliest grains, the other grains with isotopically-light zircon have the same age as spherule beds in the Pilbara Craton and elsewhere.

Spherule beds are deposits of droplets of material “splashed out” by meteorite impacts. The fact the zircons have the same age suggests they may have been formed by the same events.

The sun sets in the Pilbara, and the hunt for firewood is on. Chris Kirkland, 2021.

Further, the “top-down” pattern of isotopes can be recognised in other areas of ancient continental crust, such as in Canada and Greenland. However, data from elsewhere have not yet been carefully filtered like the Pilbara data, so it will take more work to confirm this pattern.

The next step of our research is to reanalyse these ancient rocks from elsewhere to confirm what we suspect – that the continents grew at the sites of giant meteorite impacts. Boom.

References

  1. ^ only planet we know of with continents (doi.org)
  2. ^ Earth’s biomass (www.pnas.org)
  3. ^ idea (www.nature.com)
  4. ^ several times (doi.org)
  5. ^ new research published in Nature (www.nature.com)
  6. ^ Kelvin Song / Wikimedia (en.wikipedia.org)
  7. ^ CC BY (creativecommons.org)
  8. ^ How rare minerals form when meteorites slam into Earth (theconversation.com)
  9. ^ oldest known crustal material (www.nature.com)
  10. ^ isotopes of oxygen (doi.org)

Read more https://theconversation.com/what-created-the-continents-new-evidence-points-to-giant-asteroids-185606

Times Magazine

Building a Strong Online Presence with Katoomba Web Design

Katoomba web design is more than just creating a website that looks good—it’s about building an online presence that reflects your brand, engages your audience, and drives results. For local businesses in the Blue Mountains, a well-designed website a...

September Sunset Polo

International Polo Tour To Bridge Historic Sport, Life-Changing Philanthropy, and Breath-Taking Beauty On Saturday, September 6th, history will be made as the International Polo Tour (IPT), a sports leader headquartered here in South Florida...

5 Ways Microsoft Fabric Simplifies Your Data Analytics Workflow

In today's data-driven world, businesses are constantly seeking ways to streamline their data analytics processes. The sheer volume and complexity of data can be overwhelming, often leading to bottlenecks and inefficiencies. Enter the innovative da...

7 Questions to Ask Before You Sign IT Support Companies in Sydney

Choosing an IT partner can feel like buying an insurance policy you hope you never need. The right choice keeps your team productive, your data safe, and your budget predictable. The wrong choice shows up as slow tickets, surprise bills, and risky sh...

Choosing the Right Legal Aid Lawyer in Sutherland Shire: Key Considerations

Legal aid services play an essential role in ensuring access to justice for all. For people in the Sutherland Shire who may not have the financial means to pay for private legal assistance, legal aid ensures that everyone has access to representa...

Watercolor vs. Oil vs. Digital: Which Medium Fits Your Pet's Personality?

When it comes to immortalizing your pet’s unique personality in art, choosing the right medium is essential. Each artistic medium, whether watercolor, oil, or digital, has distinct qualities that can bring out the spirit of your furry friend in dif...

The Times Features

From Garden to Gift: Why Roses Make the Perfect Present

Think back to the last time you gave or received flowers. Chances are, roses were part of the bunch, or maybe they were the whole bunch.   Roses tend to leave an impression. Even ...

Do I have insomnia? 5 reasons why you might not

Even a single night of sleep trouble can feel distressing and lonely. You toss and turn, stare at the ceiling, and wonder how you’ll cope tomorrow. No wonder many people star...

Wedding Photography Trends You Need to Know (Before You Regret Your Album)

Your wedding album should be a timeless keepsake, not something you cringe at years later. Trends may come and go, but choosing the right wedding photography approach ensures your ...

Can you say no to your doctor using an AI scribe?

Doctors’ offices were once private. But increasingly, artificial intelligence (AI) scribes (also known as digital scribes) are listening in. These tools can record and trans...

There’s a new vaccine for pneumococcal disease in Australia. Here’s what to know

The Australian government announced last week there’s a new vaccine[1] for pneumococcal disease on the National Immunisation Program for all children. This vaccine replaces pr...

What Makes a Small Group Tour of Italy So Memorable?

Traveling to Italy is on almost every bucket list. From the rolling hills of Tuscany to the sparkling canals of Venice, the country is filled with sights, flavors, and experiences ...