The Times Australia
Fisher and Paykel Appliances
The Times World News

.

Russian shelling caused a fire at a Ukrainian nuclear power plant – how close did we actually come to disaster?

  • Written by Tony Irwin, Visiting Lecturer, Nuclear Reactors and Nuclear Fuel Cycle, Australian National University
Russian shelling caused a fire at a Ukrainian nuclear power plant – how close did we actually come to disaster?

It sounds like a nightmare come true. During a military offensive as part of Russia’s invasion of Ukraine, fire broke out at Europe’s largest nuclear power station, the Zaporizhzhia power plant in the southern city of Enerhodar.

From what we understand of the situation, Russian troops were shelling the area during a battle for control of the facility, which supplies 25% of Ukraine’s electricity.

The plant has six large 950-megawatt reactors, built between 1980 and 1986 – crucially to a different design to the notorious and now decommissioned Chernobyl power station.

The fire evidently broke out in a multi-storey training building but has since been reportedly extinguished[1].

Was there a real risk of nuclear contamination?

The incident understandably raised the spectre of the 1986 Chernobyl disaster. But it’s important to remember these are two different types of reactor. Chernobyl used RBMK-type reactors[2], a Soviet design from the 1970s that was never built in the West because of inherent safety flaws.

The Zaporizhzhia power station features Russian-designed VVER reactors, which use broadly the same design as the Pressurised Water Reactor (PWR)[3], the most popular reactor design used worldwide and also the type used in nuclear-powered submarines.

A PWR has a self-contained primary cooling water system to transfer heat from the reactor core to a steam generator. This system is kept pressurised so the water doesn’t boil - hence its name. A second, separate water loop transfers the steam produced in the steam generator to the turbine that produces the electricity.

Another crucial contrast with Chernobyl is the fact that VVER and PWR reactors have a massive concrete containment around the reactor to stop any radioactive release. This completely surrounds the reactor and steam generators, ensuring any water that could potentially be radioactive is within the containment.

The containment is typically constructed from pre-stressed concrete with a steel liner. In contrast, the Chernobyl-type reactor was physically very large, meaning a similar containment to enclose that system would have been very expensive.

Read more: Military action in radioactive Chernobyl could be dangerous for people and the environment[4]

Besides the normal cooling systems, VVER reactors have emergency core cooling systems consisting of four “hydroaccumulators” – vessels pressurised with gas and filled with water that can be automatically released into the reactor to cool it. These are called “passive” systems because they rely only on gas pressure to inject the water, rather than pumps that would require electrical power.

They also have multiple systems that use pumps to inject water into the reactor to prevent a core meltdown if the normal cooling systems are not available, for instance as a result of a loss of electrical power.

If the connection to the grid is lost, standby diesel generators can provide electrical supplies to essential plant. This backup plant has several “trains” - identical and independent sets of plant that are physically separated and perform the same safety function. For example, this VVER has three trains of high-pressure water injection and three trains of low-pressure injection.

The four trains of passive hydroaccumulators do not need diesel supplies and will still provide the necessary cooling.

View of several of the reactor units at Zaporizhzhia power station
The Zaporizhzhia power station features multiple containment and cooling systems. AP

Previous disasters

In 1979, one of the PWRs at Three Mile Island in the US state of Pennsylvania suffered a core meltdown, but there was practically no radioactive release to the environment because of the concrete containment system.

After the 2011 Fukushima disaster in Japan, Ukraine’s nuclear regulator examined the capability of its nuclear power plants to withstand extreme events so all nuclear plants are better prepared to cope with these situations. This led to the installation of mobile diesel-driven pumps that can be connected to the reactor’s cooling system to provide water in an emergency.

Read more: Is Fukushima still safe after the latest earthquake?[5]

The Zaporizhzhia plant supplies 25% of Ukraine’s electricity, and Russia presumably wanted to gain control of it so as to control the electricity supply. Despite the self-evident recklessness of fighting near a nuclear power plant, it would not be in Russia’s interest to cause a radioactive release because this would immediately affect its army personnel in the vicinity, and also potentially cause a radioactive cloud to spread over western Russia and particularly the annexed region of Crimea, just to the south of the plant.

Read more https://theconversation.com/russian-shelling-caused-a-fire-at-a-ukrainian-nuclear-power-plant-how-close-did-we-actually-come-to-disaster-178549

Times Magazine

Home batteries now four times the size as new installers enter the market

Australians are investing in larger home battery set ups than ever before with data showing the ...

Q&A with Freya Alexander – the young artist transforming co-working spaces into creative galleries

As the current Artist in Residence at Hub Australia, Freya Alexander is bringing colour and creativi...

This Christmas, Give the Navman Gift That Never Stops Giving – Safety

Protect your loved one’s drives with a Navman Dash Cam.  This Christmas don’t just give – prote...

Yoto now available in Kmart and The Memo, bringing screen-free storytelling to Australian families

Yoto, the kids’ audio platform inspiring creativity and imagination around the world, has launched i...

Kool Car Hire

Turn Your Four-Wheeled Showstopper into Profit (and Stardom) Have you ever found yourself stand...

EV ‘charging deserts’ in regional Australia are slowing the shift to clean transport

If you live in a big city, finding a charger for your electric vehicle (EV) isn’t hard. But driv...

The Times Features

Anthony Albanese Probably Won’t Lead Labor Into the Next Federal Election — So Who Will?

As Australia edges closer to the next federal election, a quiet but unmistakable shift is rippli...

Top doctors tip into AI medtech capital raise a second time as Aussie start up expands globally

Medow Health AI, an Australian start up developing AI native tools for specialist doctors to  auto...

Record-breaking prize home draw offers Aussies a shot at luxury living

With home ownership slipping out of reach for many Australians, a growing number are snapping up...

Andrew Hastie is one of the few Liberal figures who clearly wants to lead his party

He’s said so himself in a podcast appearance earlier this year, stressing that he has “a desire ...

5 Ways to Protect an Aircraft

Keeping aircraft safe from environmental damage and operational hazards isn't just good practice...

Are mental health issues genetic? New research identifies brain cells linked to depression

Scientists from McGill University and the Douglas Institute recently published new research find...

What do we know about climate change? How do we know it? And where are we headed?

The 2025 United Nations Climate Change Conference (sometimes referred to as COP30) is taking pla...

The Industry That Forgot About Women - Until Now

For years, women in trades have started their days pulling on uniforms made for someone else. Th...

Q&A with Freya Alexander – the young artist transforming co-working spaces into creative galleries

As the current Artist in Residence at Hub Australia, Freya Alexander is bringing colour and creativi...