The Times Australia
Google AI
The Times World News

.

Learn how to make a sonobe unit in origami – and unlock a world of mathematical wonder

  • Written by Julia Collins, Lecturer of Mathematics, Edith Cowan University
Learn how to make a sonobe unit in origami – and unlock a world of mathematical wonder

This article is part of a series[1] explaining how readers can learn the skills to take part in activities that academics love doing as part of their work.

Many of us could happily fold a paper crane[2], yet few feel confident solving an equation like x³ – 3 x² – x + 3 = 0, to find a value for x.

Both activities, however, share similar skills: precision, the ability to follow an algorithm, an intuition for shape, and a search for pattern and symmetry.

I’m a mathematician whose hobby is origami, and I love introducing people to mathematical ideas through crafts like paper folding. Any piece of origami will contain mathematical ideas and skills, and can take you on a fascinating, creative journey.

Read more: Why bother calculating pi to 62.8 trillion digits? It's both useless and fascinating[3]

Once you’ve mastered the basic structure of a 3D shape, you may find yourself pondering deeper mathematical questions. Julia Collins

The ‘building blocks’ of origami models

As a geometer (mathematician who studies geometry), my favourite technique is modular origami. That’s where you use several pieces of folded paper as “building blocks” to create a larger, often symmetrical structure.

The building blocks, called units, are typically straightforward to fold; the mathematical skill comes in assembling the larger structure and discovering the patterns within them.

Many modular origami patterns, although they may use different units, have a similar method of combining units into a bigger creation.

So, for a little effort you are rewarded with a vast number of models to explore.

My website Maths Craft Australia[4] contains a range of modular origami patterns, as well as patterns for other crafts such as crochet, knitting and stitching.

They require no mathematical background but will take you in some fascinating mathematical directions.

This model, folded by the author, uses a design from the book Perfectly Mindful Origami - The Art and Craft of Geometric Origami by Mark Bolitho.

Building 3D shapes from smaller 2D units

In mathematics, the shapes with the most symmetry are called the Platonic solids[5]. They’re named after the ancient Greek philosopher Plato (although they almost certainly predate him and have been discovered in ancient civilisations around the world).

The Platonic solids are 3D shapes made from regular 2D shapes (also known as regular polygons) where every side and angle is identical: equilateral triangles, squares, pentagons.

While there are infinitely many regular polygons, there are, surprisingly, only five Platonic solids:

  • the tetrahedron (four triangles)

  • the cube (six squares)

  • the octahedron (eight triangles)

  • the dodecahedron (12 pentagons) and

  • the icosahedron (20 triangles).

To build Platonic solids in origami, the best place to start is to master what’s known as the “sonobe unit[6]”.

Sonobe units, like these ones piled in a stack, can be put together to create 3D shapes. Sonobe units, like these ones piled in a stack, can be put together to create 3D shapes. Julia Collins, Author provided

Enter the sonobe unit

A sonobe unit (sometimes called the sonobe module) looks a bit like a parallelogram with two flaps folded behind.

I’ve got instructions for how to make a sonobe unit on my website[7] and there are plenty of videos online, like this one:

How to make a sonobe unit.

Sonobe units are fast and simple to fold, and can be fitted together to create beautiful, intriguing 3D shapes like these:

Three sonobe origami models by Julia Collins.

You will need six sonobe units to make a cube like the yellow-blue-green one pictured above, 12 to make an octahedron (the red-pink-purple one), and 30 to make an icosahedron (the golden one). (Interestingly, it’s not possible to build a tetrahedron and dodecahedron from sonobe units).

I’ve got written instructions for building the cube on my website[8], and some quick searching online will find you instructions for the larger models.

Sonobe units can be put together to build wondrous shapes. Sonobe units can be put together to build wondrous shapes. Julia Collins, Author provided

Into the mathematical rabbit hole

Once you’ve mastered the basic structure of each 3D shape, you may find yourself (as others have done[9]) pondering deeper mathematical questions.

Can you arrange the sonobe units so two units of the same colour never touch, if you only have three colours?

Are larger symmetric shapes possible? (Answer: yes!)

Are there relationships between the different 3D shapes? (For example, the icosahedron is basically built of triangles, but can you spot the pentagons lurking within? Or the triangles in the dodecahedron?)

One seemingly innocent question can easily lead to a mathematical rabbit hole.

Questions about colouring will lead you to the mathematics of graphs and networks (and big questions that remained unsolved for many centuries[10]).

Questions about larger models will lead you to the Archimedean solids[11] and the Johnson solids[12]. These 3D shapes have a lot of symmetry, though not as much as the Platonic solids.

Then, for a truly mind-bending journey, you might land on the concept of higher-dimensional symmetric shapes[13].

Or perhaps your questions will lead you in the opposite direction.

Instead of using origami to explore new ideas in mathematics, some researchers have used mathematical frameworks to explore new ideas in origami.

Origami can take you into the mathematical rabbit hole. Origami can take you into the mathematical rabbit hole. Julia Collins, Author provided

Solving old problems in new ways

Perhaps the most famous mathematical origami artist is the US-based former NASA physicist Robert Lang[14], who designs computer programs that generate crease patterns for fantastically complicated models.

His models include segmented tarantulas and ants, stags with twisted antlers and soaring, feathered birds.

Credit: Great Big Story/YouTube.

Robert Lang and others have also created crease patterns for use in new engineering contexts such as folding telescope lenses[15], air bags[16] and solar panels[17].

Read more: Curved origami offers a creative route to making robots and other mechanical devices[18]

My final example of the power of origami goes back to the cubic equation I mentioned at the outset:

x³ – 3 x² – x + 3 = 0

Cubic equations relate to some “impossible” mathematical problems, such as trisecting an angle[19] (splitting an arbitrary angle into three equal angles). Or doubling a cube[20] (which is finding a cube with double the volume of a given cube).

A blue and purple origami shape sits on a grey background. Any piece of origami will contain mathematical ideas and skills. Julia Collins, Author provided

Famously, these problems cannot be solved using the classical methods of a straightedge (ruler without the markings) and compass.

In 1980, however, Japanese mathematician Hisashi Abe showed how to solve all these problems using origami[21].

I am excited to see where mathematics and origami will intersect in future. Grab some paper today, make a few models and start your own journey of mathematical exploration.

You can read other articles in this series here[22].

References

  1. ^ series (theconversation.com)
  2. ^ paper crane (origami.me)
  3. ^ Why bother calculating pi to 62.8 trillion digits? It's both useless and fascinating (theconversation.com)
  4. ^ Maths Craft Australia (www.mathscraftaus.org)
  5. ^ Platonic solids (en.wikipedia.org)
  6. ^ sonobe unit (momath.org)
  7. ^ on my website (static1.squarespace.com)
  8. ^ on my website (static1.squarespace.com)
  9. ^ others have done (www.polypompholyx.com)
  10. ^ unsolved for many centuries (en.wikipedia.org)
  11. ^ Archimedean solids (en.wikipedia.org)
  12. ^ Johnson solids (en.wikipedia.org)
  13. ^ higher-dimensional symmetric shapes (en.wikipedia.org)
  14. ^ Robert Lang (langorigami.com)
  15. ^ folding telescope lenses (langorigami.com)
  16. ^ air bags (royalsocietypublishing.org)
  17. ^ solar panels (www.nasa.gov)
  18. ^ Curved origami offers a creative route to making robots and other mechanical devices (theconversation.com)
  19. ^ trisecting an angle (mathworld.wolfram.com)
  20. ^ doubling a cube (en.wikipedia.org)
  21. ^ solve all these problems using origami (plus.maths.org)
  22. ^ here (theconversation.com)

Read more https://theconversation.com/learn-how-to-make-a-sonobe-unit-in-origami-and-unlock-a-world-of-mathematical-wonder-171390

Times Magazine

AI is failing ‘Humanity’s Last Exam’. So what does that mean for machine intelligence?

How do you translate ancient Palmyrene script from a Roman tombstone? How many paired tendons ...

Does Cloud Accounting Provide Adequate Security for Australian Businesses?

Today, many Australian businesses rely on cloud accounting platforms to manage their finances. Bec...

Freak Weather Spikes ‘Allergic Disease’ and Eczema As Temperatures Dip

“Allergic disease” and eczema cases are spiking due to the current freak weather as the Bureau o...

IPECS Phone System in 2026: The Future of Smart Business Communication

By 2026, business communication is no longer just about making and receiving calls. It’s about speed...

With Nvidia’s second-best AI chips headed for China, the US shifts priorities from security to trade

This week, US President Donald Trump approved previously banned exports[1] of Nvidia’s powerful ...

Navman MiVue™ True 4K PRO Surround honest review

If you drive a car, you should have a dashcam. Need convincing? All I ask that you do is search fo...

The Times Features

The past year saw three quarters of struggling households in NSW & ACT experience food insecurity for the first time – yet the wealth of…

Everyday Australians are struggling to make ends meet, with the cost-of-living crisis the major ca...

The Week That Was in Federal Parliament Politics: Will We Have an Effective Opposition Soon?

Federal Parliament returned this week to a familiar rhythm: government ministers defending the p...

Why Pictures Help To Add Colour & Life To The Inside Of Your Australian Property

Many Australian homeowners complain that their home is still missing something, even though they hav...

What the RBA wants Australians to do next to fight inflation – or risk more rate hikes

When the Reserve Bank of Australia (RBA) board voted unanimously[1] to lift the cash rate to 3.8...

Do You Need a Building & Pest Inspection for New Homes in Melbourne?

Many buyers assume that a brand-new home does not need an inspection. After all, everything is new...

A Step-by-Step Guide to Planning Your Office Move in Perth

Planning an office relocation can be a complex task, especially when business operations need to con...

What’s behind the surge in the price of gold and silver?

Gold and silver don’t usually move like meme stocks. They grind. They trend. They react to inflati...

State of Play: Nationals vs Liberals

The State of Play with the National Party and How Things Stand with the Liberal Party Australia’s...

SMEs face growing payroll challenges one year in on wage theft reforms

A year after wage theft reforms came into effect, Australian SMEs are confronting a new reality. P...