The Times Australia
The Times World News

.
The Times Real Estate

.

Why the oil industry's pivot to carbon capture and storage – while it keeps on drilling – isn't a climate change solution

  • Written by June Sekera, Senior Research Fellow, Visiting Scholar, The New School
Why the oil industry's pivot to carbon capture and storage – while it keeps on drilling – isn't a climate change solution

After decades of sowing doubt[1] about climate change and its causes, the fossil fuel industry is now shifting to a new strategy: presenting itself as the source of solutions. This repositioning includes rebranding itself as a “carbon management industry.”

This strategic pivot was on display[2] at the Glasgow climate summit and at a Congressional hearing[3] in October 2021, where CEOs of four major oil companies talked about a “lower-carbon future.” That future, in their view, would be powered by the fuels they supply and technologies they could deploy to remove the planet-warming carbon dioxide their products emit – provided they get sufficient government support.

That support may be coming. The Department of Energy recently added “carbon management” to the name[4] of its Office of Fossil Energy and Carbon Management and is expanding its funding for carbon capture and storage[5].

But how effective are these solutions, and what are their consequences?

Coming from backgrounds in economics, ecology[6] and public policy[7], we have spent several years focusing on carbon drawdown[8]. We have watched mechanical carbon capture methods struggle to demonstrate success, despite U.S. government investments of over US$7 billion in direct spending[9] and at least a billion more in tax credits[10]. Meanwhile, proven biological solutions with multiple benefits have received far less attention.

CCS’s troubled track record

Carbon capture and storage, or CCS, aims to capture carbon dioxide as it emerges from smokestacks either at power plants or from industrial sources. So far, CCS at U.S. power plants has been a failure.

Seven large-scale CCS projects have been attempted at U.S. power plants, each with hundreds of millions of dollars of government subsidies, but these projects were either canceled before they reached commercial operation or were shuttered[11] after they started due to financial[12] or mechanical troubles. There is only one commercial-scale CCS power plant operation in the world, in Canada[13], and its captured carbon dioxide is used to extract more oil from wells[14] – a process called “enhanced oil recovery[15].”

In industrial facilities, all but one of the dozen CCS projects in the U.S[16] uses the captured carbon dioxide for enhanced oil recovery.

This expensive oil extraction technique has been described as “climate mitigation[17]” because the oil companies are now using carbon dioxide. But a modeling study of the full life cycle of this process at coal-fired power plants found it puts 3.7 to 4.7 times as much carbon dioxide into the air as it removes[18].

The problem with pulling carbon from the air

Another method would directly remove carbon dioxide from the air. Oil companies like Occidental Petroleum[19] and ExxonMobil[20] are seeking government subsidies to develop and deploy such “direct air capture” systems. However, one widely recognized problem with these systems is their immense energy requirements, particularly if operating at a climate-significant scale, meaning removing at least 1 gigaton – 1 billion tons – of carbon dioxide per year.

That’s about 3% of annual global carbon dioxide emissions. The U.S. National Academies of Sciences[21] projects a need to remove 10 gigatons per year by 2050, and 20 gigatons per year by century’s end if decarbonization efforts fall short.

The only type of direct air capture system in relatively large-scale development right now must be powered by a fossil fuel[22] to attain the extremely high heat for the thermal process.

A National Academies of Sciences[23] study of direct air capture’s energy use indicates that to capture 1 gigaton of carbon dioxide per year, this type of direct air capture system could require up to 3,889 terawatt-hours of energy – almost as much as the total electricity generated in the U.S. in 2020[24]. The largest direct air capture plant being developed in the U.S. right now uses this system, and the captured carbon dioxide will be used for oil recovery[25].

Another direct air capture system, employing a solid sorbent, uses somewhat less energy, but companies have struggled to scale it up beyond pilots. There are ongoing efforts to develop more efficient and effective direct air capture technologies, but some scientists are skeptical about its potential. One study describes enormous material and energy demands of direct air capture that the authors say make it “unrealistic.”[26] Another shows that spending the same amount of money on clean energy to replace fossil fuels is more effective at reducing emissions, air pollution and other costs[27].

The cost of scaling up

A 2021 study envisions spending $1 trillion a year[28] to scale up direct air capture to a meaningful level. Bill Gates[29], who is backing a direct air capture company called Carbon Engineering, estimated that operating at climate-significant scale would cost $5.1 trillion every year. Much of the cost would be borne by governments because there is no “customer” for burying waste underground.

As lawmakers in the U.S. and elsewhere consider devoting billions more dollars to carbon capture, they need to consider the consequences.

The captured carbon dioxide must be transported somewhere for use or storage. A 2020 study from Princeton estimated that 66,000 miles of carbon dioxide pipelines[30] would have to be built by 2050 to begin to approach 1 gigaton per year of transport and burial.

The issues with burying highly pressurized CO2 underground will be analogous to the problems that have faced nuclear waste siting, but at enormously larger quantities. Transportation, injection and storage of carbon dioxide bring health and environmental hazards, such as the risk of pipeline ruptures[31], groundwater contamination[32] and the release of toxins[33], all of which particularly threaten the disadvantaged communities historically most victimized by pollution.

Bringing direct air capture to a scale that would have climate-significant impact would mean diverting taxpayer funding, private investment, technological innovation, scientists’ attention, public support and difficult-to-muster political action away from the essential work of transitioning to non-carbon energy sources.

A proven method: trees, plants and soil

Rather than placing what we consider to be risky bets on expensive mechanical methods that have a troubled track record and require decades of development, there are ways to sequester carbon that build upon the system we already know works: biological sequestration.

[Science, politics, religion or just plain interesting articles: Check out The Conversation’s weekly newsletters[34].]

Trees in the U.S. already sequester almost a billion tons[35] of carbon dioxide per year. Improved management of existing forests and urban trees, without using any additional land, could increase this by 70%[36]. With the addition of reforesting nearly 50 million acres, an area about the size of Nebraska, the U.S. could sequester nearly 2 billion tons of carbon dioxide per year[37]. That would equal about 40% of the country’s annual emissions. Restoring wetlands[38] and grasslands[39] and better agricultural practices[40] could sequester even more.

Looking up toward the crowns of giant sequoia trees.
Storing carbon in trees is less expensive per ton than current mechanical solutions. Lisa-Blue via Getty Images[41]

Per ton of carbon dioxide sequestered, biological sequestration costs about one-tenth as much[42] as current mechanical methods. And it offers valuable side-benefits by reducing soil erosion and air pollution, and urban heat; increasing water security, biodiversity and energy conservation; and improving watershed protection, human nutrition and health.

To be clear, no carbon removal approach – neither mechanical nor biological – will solve the climate crisis without an immediate transition away from fossil fuels. But we believe that relying on the fossil fuel industry for “carbon management” will only further delay that transition.

References

  1. ^ decades of sowing doubt (doi.org)
  2. ^ on display (www.globalwitness.org)
  3. ^ Congressional hearing (oversight.house.gov)
  4. ^ to the name (www.energy.gov)
  5. ^ expanding its funding for carbon capture and storage (news.bloomberglaw.com)
  6. ^ backgrounds in economics, ecology (sites.tufts.edu)
  7. ^ and public policy (capitalismstudies.org)
  8. ^ focusing on carbon drawdown (link.springer.com)
  9. ^ US$7 billion in direct spending (sgp.fas.org)
  10. ^ billion more in tax credits (www.rollcall.com)
  11. ^ were shuttered (sgp.fas.org)
  12. ^ financial (www.globalccsinstitute.com)
  13. ^ in Canada (www.power-technology.com)
  14. ^ is used to extract more oil from wells (dualchallenge.npc.org)
  15. ^ enhanced oil recovery (www.netl.doe.gov)
  16. ^ dozen CCS projects in the U.S (www.globalccsinstitute.com)
  17. ^ climate mitigation (www.iea.org)
  18. ^ puts 3.7 to 4.7 times as much carbon dioxide into the air as it removes (pubs.acs.org)
  19. ^ Occidental Petroleum (www.globalccsinstitute.com)
  20. ^ ExxonMobil (corporate.exxonmobil.com)
  21. ^ National Academies of Sciences (www.nap.edu)
  22. ^ fossil fuel (www.nap.edu)
  23. ^ National Academies of Sciences (www.nap.edu)
  24. ^ generated in the U.S. in 2020 (www.eia.gov)
  25. ^ the captured carbon dioxide will be used for oil recovery (www.naturalgasintel.com)
  26. ^ “unrealistic.” (doi.org)
  27. ^ more effective at reducing emissions, air pollution and other costs (research.american.edu)
  28. ^ envisions spending $1 trillion a year (doi.org)
  29. ^ Bill Gates (www.reuters.com)
  30. ^ 66,000 miles of carbon dioxide pipelines (netzeroamerica.princeton.edu)
  31. ^ pipeline ruptures (www.huffpost.com)
  32. ^ groundwater contamination (eesa.lbl.gov)
  33. ^ toxins (doi.org)
  34. ^ Check out The Conversation’s weekly newsletters (memberservices.theconversation.com)
  35. ^ almost a billion tons (www.epa.gov)
  36. ^ could increase this by 70% (netzeroamerica.princeton.edu)
  37. ^ nearly 2 billion tons of carbon dioxide per year (netzeroamerica.princeton.edu)
  38. ^ wetlands (doi.org)
  39. ^ grasslands (www.fao.org)
  40. ^ better agricultural practices (functionalfertiliser.co.nz)
  41. ^ Lisa-Blue via Getty Images (www.gettyimages.com)
  42. ^ costs about one-tenth as much (www.climateadvisers.com)

Read more https://theconversation.com/why-the-oil-industrys-pivot-to-carbon-capture-and-storage-while-it-keeps-on-drilling-isnt-a-climate-change-solution-171791

The Times Features

What are physician assistants? Can they fix the doctor shortage?

If you’ve tried to get an appointment to see a GP or specialist recently, you will likely have felt the impact of Australia’s doctor shortages[1]. To alleviate workforce sho...

Do men and women agree on how easy it is for each other to find a job or a date?

Typically, you don’t have to write a cover letter before attending a candlelit dinner. But there are some eerie emotional parallels between finding a job and finding a date. ...

Australia’s clinical guidelines shape our health care. Why do so many still ignore sex and gender?

You’ve heard of the gender pay gap. What about the gap in medical care? Cardiovascular diseases – which can lead to heart attack and stroke – are one of the leading causes[1...

Don't Get Burned—Smart Insurance for Your Investment Property

Real estate investment offers lucrative opportunities even though it brings operational risks. Real estate investment protection fundamentally depends on obtaining the correct insu...

Why it’s important to actively choose the music for your mood

Many of us take pleasure in listening to music[1]. Music accompanies important life events and lubricates social encounters. It represents aspects of our existing identity, a...

The Link Between Heart Health and Ageing Well

Millions of Australians are at risk of heart disease, but fewer realise that keeping their heart healthy can also help protect their brain, memory, and cognitive function, redu...

Times Magazine

Improving Website Performance with a Cloud VPS

Websites represent the new mantra of success. One slow website may make escape for visitors along with income too. Therefore it's an extra offer to businesses seeking better performance with more scalability and, thus represents an added attracti...

Why You Should Choose Digital Printing for Your Next Project

In the rapidly evolving world of print media, digital printing has emerged as a cornerstone technology that revolutionises how businesses and creative professionals produce printed materials. Offering unparalleled flexibility, speed, and quality, d...

What to Look for When Booking an Event Space in Melbourne

Define your event needs early to streamline venue selection and ensure a good fit. Choose a well-located, accessible venue with good transport links and parking. Check for key amenities such as catering, AV equipment, and flexible seating. Pla...

How BIM Software is Transforming Architecture and Engineering

Building Information Modeling (BIM) software has become a cornerstone of modern architecture and engineering practices, revolutionizing how professionals design, collaborate, and execute projects. By enabling more efficient workflows and fostering ...

How 32-Inch Computer Monitors Can Increase Your Workflow

With the near-constant usage of technology around the world today, ergonomics have become crucial in business. Moving to 32 inch computer monitors is perhaps one of the best and most valuable improvements you can possibly implement. This-sized moni...

Top Tips for Finding a Great Florist for Your Sydney Wedding

While the choice of wedding venue does much of the heavy lifting when it comes to wowing guests, decorations are certainly not far behind. They can add a bit of personality and flair to the traditional proceedings, as well as enhancing the venue’s ...

LayBy Shopping