The Times Australia
The Times World News

.
The Times Real Estate

.

The Moon's top layer alone has enough oxygen to sustain 8 billion people for 100,000 years

  • Written by John Grant, Lecturer in Soil Science, Southern Cross University
The Moon's top layer alone has enough oxygen to sustain 8 billion people for 100,000 years

Alongside advances in space exploration, we’ve recently seen much time and money invested into technologies that could allow effective space resource utilisation[1]. And at the forefront of these efforts has been a laser-sharp focus on finding the best way to produce oxygen[2] on the Moon.

In October, the Australian Space Agency and NASA signed a deal[3] to send an Australian-made rover to the Moon under the Artemis program, with a goal to collect lunar rocks that could ultimately provide breathable oxygen on the Moon.

Although the Moon does have an atmosphere, it’s very thin and composed mostly of hydrogen, neon and argon. It’s not the sort of gaseous mixture that could sustain oxygen-dependent mammals such as humans.

That said, there is actually plenty of oxygen on the Moon. It just isn’t in a gaseous form. Instead it’s trapped inside regolith — the layer of rock and fine dust that covers the Moon’s surface. If we could extract oxygen from regolith, would it be enough to support human life on the Moon?

The breadth of oxygen

Oxygen can be found in many of the minerals in the ground around us. And the Moon is mostly made of the same rocks you’ll find on Earth (although with a slightly greater amount of material that came from meteors).

Minerals such as silica, aluminium, and iron and magnesium oxides dominate the Moon’s landscape. All of these minerals contain oxygen, but not in a form our lungs can access.

On the Moon these minerals exist in a few different forms including hard rock, dust, gravel and stones covering the surface. This material was resulted from the impacts of meteorites crashing into the lunar surface over countless millennia.

Some people call the Moon’s surface layer lunar “soil”, but as a soil scientist I’m hesitant to use this term. Soil as we know it is pretty magical stuff that only occurs on Earth. It has been created by a vast array of organisms working on the soil’s parent material — regolith, derived from hard rock — over millions of years.

The result is a matrix of minerals which were not present in the original rocks. Earth’s soil is imbued with remarkable physical, chemical and biological characteristics. Meanwhile, the materials on the Moon’s surface is basically regolith in its original, untouched form.

One substance goes in, two come out

The Moon’s regolith is made up of[4] approximately 45% oxygen[5]. But that oxygen is tightly bound into the minerals mentioned above. In order to break apart those strong bonds, we need to put in energy.

You might be familiar with this if you know about electrolysis. On Earth this process is commonly used in manufacturing, such as to produce aluminium. An electrical current is passed through a liquid form of aluminium oxide (commonly called alumina) via electrodes, to separate the aluminium from the oxygen.

In this case, the oxygen is produced as a byproduct. On the Moon, the oxygen would be the main product and the aluminium (or other metal) extracted would be a potentially useful byproduct.

It’s a pretty straightforward process, but there is a catch: it’s very energy hungry. To be sustainable, it would need to be supported by solar energy or other energy sources available on the Moon.

Aerial view of alumina refinery in Queensland
There are multiple alumina (aluminium oxide) refineries in Australia, including this one pictured in Gladstone, Queensland. Aluminium is produced in two stages. Before pure aluminium can be released using electrolysis (in what is known as the Hall-Heroult process), alumina refineries must first refine naturally occurring bauxite ore to extract the alumina (from which pure aluminium is later retrieved). Dave Hunt/AAP

Extracting oxygen from regolith would also require substantial industrial equipment. We’d need to first convert solid metal oxide into liquid form, either by applying heat, or heat combined with solvents or electrolytes. We have the technology[6] to do this on Earth, but moving this apparatus to the Moon – and generating enough energy to run it – will be a mighty challenge.

Earlier this year, Belgium-based startup Space Applications Services announced it was building three experimental reactors to improve the process of making oxygen via electrolysis. They expect to send the technology to the Moon by 2025 as part of the European Space Agency’s in-situ resource utilisation (ISRU) mission[7].

How much oxygen could the Moon provide?

That said, when we do manage to pull it off, how much oxygen might the Moon actually deliver? Well, quite a lot as it turns out.

If we ignore oxygen tied up in the Moon’s deeper hard rock material — and just consider regolith which is easily accessible on the surface — we can come up with some estimates.

Each cubic metre of lunar regolith contains 1.4 tonnes of minerals on average, including about 630 kilograms of oxygen. NASA says humans need to breathe about 800 grams[8] of oxygen a day to survive. So 630kg oxygen would keep a person alive for about two years (or just over).

Now let’s assume the average depth of regolith on the Moon is about ten metres[9], and that we can extract all of the oxygen from this. That means the top ten metres of the Moon’s surface would provide enough oxygen to support all eight billion people on Earth for somewhere around 100,000 years.

This would also depend on how effectively we managed to extract and use the oxygen. Regardless, this figure is pretty amazing!

Having said that, we do have it pretty good here on Earth. And we should do everything we can to protect the blue planet — and its soil in particular — which continues to support all terrestrial life without us even trying.

References

  1. ^ space resource utilisation (www.nasa.gov)
  2. ^ the best way to produce oxygen (www.sciencedirect.com)
  3. ^ signed a deal (www.nasa.gov)
  4. ^ made up of (www.lpi.usra.edu)
  5. ^ 45% oxygen (sites.wustl.edu)
  6. ^ have the technology (phys.org)
  7. ^ mission (exploration.esa.int)
  8. ^ 800 grams (www.nasa.gov)
  9. ^ about ten metres (www.lpi.usra.edu)

Read more https://theconversation.com/the-moons-top-layer-alone-has-enough-oxygen-to-sustain-8-billion-people-for-100-000-years-170013

The Times Features

10 Ways to Make Money Online and Provide Financial Stability

The possibility of earning money online has reached unprecedented heights. The proper strategy enables anyone to begin earning money. You don't need fancy degrees or special skil...

The Power of Exterior Design: How Facades Influence Property Value

First impressions count when it comes to real estate, and nothing quite sets the tone for a property like its exterior design. A building's facade is more than just an aesthetic ...

The Best Adjustable Bed and Mattress Packages for Comfort

The appropriate bed and mattress are essential for establishing the perfect sleep environment. If you seek a way to upgrade your sleep experience, adjustable bed and mattress pac...

Designing a Modern Home: Features That Will Make Your Dream House Stand Out

Designing your dream home is an exciting journey, and for many, it’s an opportunity to create a space that reflects their personal style, functionality needs, and modern trends. ...

Client Dinners Done Right: Tips for Meaningful Engagement

Client dinners offer more than just a meal—they’re an opportunity to build lasting business relationships in a more personal and relaxed setting. Done well, these dinners can str...

From Classic to Contemporary: 5 Timeless Costumes for Any Party

When it comes to dressing up for a costume party, you want to choose something that is not only fun but also memorable. Whether you're attending a Halloween event, a themed gathe...

Times Magazine

Top Benefits of Hiring Commercial Electricians for Your Business

When it comes to business success, there are no two ways about it: qualified professionals are critical. While many specialists are needed, commercial electricians are among the most important to have on hand. They are directly involved in upholdin...

The Essential Guide to Transforming Office Spaces for Maximum Efficiency

Why Office Fitouts MatterA well-designed office can make all the difference in productivity, employee satisfaction, and client impressions. Businesses of all sizes are investing in updated office spaces to create environments that foster collaborat...

The A/B Testing Revolution: How AI Optimized Landing Pages Without Human Input

A/B testing was always integral to the web-based marketing world. Was there a button that converted better? Marketing could pit one against the other and see which option worked better. This was always through human observation, and over time, as d...

Using Countdown Timers in Email: Do They Really Increase Conversions?

In a world that's always on, where marketers are attempting to entice a subscriber and get them to convert on the same screen with one email, the power of urgency is sometimes the essential element needed. One of the most popular ways to create urg...

Types of Software Consultants

In today's technology-driven world, businesses often seek the expertise of software consultants to navigate complex software needs. There are several types of software consultants, including solution architects, project managers, and user experienc...

CWU Assistive Tech Hub is Changing Lives: Win a Free Rollator Walker This Easter!

🌟 Mobility. Independence. Community. All in One. This Easter, the CWU Assistive Tech Hub is pleased to support the Banyule community by giving away a rollator walker. The giveaway will take place during the Macleod Village Easter Egg Hunt & Ma...

LayBy Shopping