The Times Australia
The Times World News

.

To swim like a tuna, robotic fish need to change how stiff their tails are in real time

  • Written by Daniel Quinn, Assistant Professor of Mechanical and Aerospace Engineering, University of Virginia
To swim like a tuna, robotic fish need to change how stiff their tails are in real time

Underwater vehicles haven’t changed much since the submarines of World War II. They’re rigid, fairly boxy and use propellers to move. And whether they are large manned vessels or small robots, most underwater vehicles have one cruising speed where they are most energy efficient.

Fish take a very different approach to moving through water: Their bodies and fins are very flexible, and this flexibility allows them to interact with water more efficiently[1] than rigid machines. Researchers have been designing and building flexible fishlike robots for years, but they still trail far behind real fish in terms of efficiency[2].

What’s missing?

I am an engineer and study fluid dynamics[3]. My labmates and I wondered if something in particular about the flexibility of fish tails allows fish to be so fast and efficient in the water. So, we created a model and built a robot to study the effect of stiffness on swimming efficiency. We found fish swim so efficiently over a wide range of speeds because they can change how rigid or flexible their tails are in real time[4].

A sketch of a human–powered helicopter with a large spiral propeller on top.
Leonardo Da Vinci designed a propeller–driven helicopter in 1481. Leonardo Da Vinci/WikimediaCommons[5]

Why are people still using propellers?

Fluid dynamics applies to both liquids and gasses. Humans have been using rotating rigid objects to move vehicles for hundreds of years – Leonardo Da Vinci incorporated the concept into his helicopter designs[6], and the first propeller–driven boats were built in the 1830s[7]. Propellers are easy to make, and they work just fine at their designed cruise speed.

It has only been in the past couple of decades that advances in soft robotics[8] have made actively controlled flexible components a reality. Now, marine roboticists are turning to flexible fish and their amazing swimming abilities for inspiration.

When engineers like me talk about flexibility in a swimming robot, we are usually referring to how stiff the tail of the fish is. The tail is the entire rear half of a fish’s body that moves back and forth when it swims.

Consider tuna, which can swim up to 50 mph[9] and are extremely energy efficient over a wide range of speeds[10].

Tuna are some of the fastest fish in the ocean.

The tricky part about copying the biomechanics of fish is that biologists don’t know how flexible they are in the real world. If you want to know how flexible a rubber band is, you simply pull on it. If you pull on a fish’s tail, the stiffness depends on how much the fish is tensing its various muscles.

The best that researchers can do to estimate flexibility[11] is film a swimming fish and measure how its body shape changes.

Visualization of a fish swimming with colorful representations of water flow. Visualizing how water flows around the fish tail showed that tail stiffness had to increase as the square of swimming speed for a fish to be most efficient. Qiang Zhong and Daniel Quinn, CC BY-ND[12]

Searching for answers in the math

Researchers have built dozens of robots[13] in an attempt to mimic the flexibility and swimming patterns of tuna and other fish, but none have matched the performance of the real things.

In my lab at the University of Virginia, my colleagues and I ran into the same questions as others: How flexible should our robot be? And if there’s no one best flexibility, how should our robot change its stiffness as it swims?

We looked for the answer in an old NASA paper about vibrating airplane wings[14]. The report explains how when a plane’s wings vibrate, the vibrations change the amount of lift the wings produce. Since fish fins and airplane wings have similar shapes, the same math works well to model how much thrust fish tails produce as they flap back and forth.

Using the old wing theory, postdoctoral researcher Qiang Zhong and I created a mathematical model of a swimming fish and added a spring and pulley to the tail to represent the effects of a tensing muscle. We discovered a surprisingly simple hypothesis hiding in the equations. To maximize efficiency, muscle tension needs to increase as the square of swimming speed[15]. So, if swimming speed doubles, stiffness needs to increase by a factor of four. To swim three times faster while maintaining high efficiency, a fish or fish-like robot needs to pull on its tendon about nine times harder.

To confirm our theory, we simply added an artificial tendon to one of our tunalike robots and then programmed the robot to vary its tail stiffness based on speed. We then put our new robot into our test tank and ran it through various “missions” – like a 200-meter sprint where it had to dodge simulated obstacles. With the ability to vary its tail’s flexibility, the robot used about half as much energy on average across a wide range of speeds compared to robots with a single stiffness.

Two people standing with a fish robot over a tank of water. Qiang Zhong (left) and Daniel Quinn designed their robot to vary its stiffness as it swam at different speeds. Yicong Fu, CC BY-ND[16]

Why it matters

While it is great to build one excellent robot, the thing my colleagues and I are most excited about is that our model is adaptable. We can tweak it based on body size, swimming style or even fluid type. It can be applied to animals and machines whether they are big or small, swimmers or flyers.

For example, our model suggests that dolphins have a lot to gain from the ability to vary their tails’ stiffness, whereas goldfish don’t get much benefit due to their body size, body shape and swimming style.

The model has applications for robotic design too. Higher energy efficiency when swimming or flying – which also means quieter robots – would enable radically new missions for vehicles and robots that currently have only one efficient cruising speed. In the short term, this could help biologists study river beds and coral reefs more easily, enable researchers to track wind and ocean currents at unprecedented scales or allow search and rescue teams to operate farther and longer.

In the long term, I hope our research could inspire new designs for submarines and airplanes. Humans have only been working on swimming and flying machines for a couple centuries, while animals have been perfecting their skills for millions of years. There’s no doubt there is still a lot to learn from them.

[Get our best science, health and technology stories. Sign up for The Conversation’s science newsletter[17].]

References

  1. ^ more efficiently (doi.org)
  2. ^ still trail far behind real fish in terms of efficiency (doi.org)
  3. ^ engineer and study fluid dynamics (scholar.google.com)
  4. ^ change how rigid or flexible their tails are in real time (doi.org)
  5. ^ Leonardo Da Vinci/WikimediaCommons (commons.wikimedia.org)
  6. ^ incorporated the concept into his helicopter designs (theconversation.com)
  7. ^ built in the 1830s (doi.org)
  8. ^ advances in soft robotics (doi.org)
  9. ^ up to 50 mph (doi.org)
  10. ^ extremely energy efficient over a wide range of speeds (doi.org)
  11. ^ estimate flexibility (doi.org)
  12. ^ CC BY-ND (creativecommons.org)
  13. ^ dozens of robots (doi.org)
  14. ^ old NASA paper about vibrating airplane wings (core.ac.uk)
  15. ^ increase as the square of swimming speed (doi.org)
  16. ^ CC BY-ND (creativecommons.org)
  17. ^ Sign up for The Conversation’s science newsletter (theconversation.com)

Read more https://theconversation.com/to-swim-like-a-tuna-robotic-fish-need-to-change-how-stiff-their-tails-are-in-real-time-168046

Times Magazine

Headless CMS in Digital Twins and 3D Product Experiences

Image by freepik As the metaverse becomes more advanced and accessible, it's clear that multiple sectors will use digital twins and 3D product experiences to visualize, connect, and streamline efforts better. A digital twin is a virtual replica of ...

The Decline of Hyper-Casual: How Mid-Core Mobile Games Took Over in 2025

In recent years, the mobile gaming landscape has undergone a significant transformation, with mid-core mobile games emerging as the dominant force in app stores by 2025. This shift is underpinned by changing user habits and evolving monetization tr...

Understanding ITIL 4 and PRINCE2 Project Management Synergy

Key Highlights ITIL 4 focuses on IT service management, emphasising continual improvement and value creation through modern digital transformation approaches. PRINCE2 project management supports systematic planning and execution of projects wit...

What AI Adoption Means for the Future of Workplace Risk Management

Image by freepik As industrial operations become more complex and fast-paced, the risks faced by workers and employers alike continue to grow. Traditional safety models—reliant on manual oversight, reactive investigations, and standardised checklist...

From Beach Bops to Alpine Anthems: Your Sonos Survival Guide for a Long Weekend Escape

Alright, fellow adventurers and relaxation enthusiasts! So, you've packed your bags, charged your devices, and mentally prepared for that glorious King's Birthday long weekend. But hold on, are you really ready? Because a true long weekend warrior kn...

Effective Commercial Pest Control Solutions for a Safer Workplace

Keeping a workplace clean, safe, and free from pests is essential for maintaining productivity, protecting employee health, and upholding a company's reputation. Pests pose health risks, can cause structural damage, and can lead to serious legal an...

The Times Features

Tricia Paoluccio designer to the stars

The Case for Nuturing Creativity in the Classroom, and in our Lives I am an actress and an artist who has had the privilege of sharing my work across many countries, touring my ...

Duke of Dural to Get Rooftop Bar as New Owners Invest in Venue Upgrade

The Duke of Dural, in Sydney’s north-west, is set for a major uplift under new ownership, following its acquisition by hospitality group Good Beer Company this week. Led by resp...

Prefab’s Second Life: Why Australia’s Backyard Boom Needs a Circular Makeover

The humble granny flat is being reimagined not just as a fix for housing shortages, but as a cornerstone of circular, factory-built architecture. But are our systems ready to s...

Melbourne’s Burglary Boom: Break-Ins Surge Nearly 25%

Victorian homeowners are being warned to act now, as rising break-ins and falling arrest rates paint a worrying picture for suburban safety. Melbourne residents are facing an ...

Exploring the Curriculum at a Modern Junior School in Melbourne

Key Highlights The curriculum at junior schools emphasises whole-person development, catering to children’s physical, emotional, and intellectual needs. It ensures early year...

Distressed by all the bad news? Here’s how to stay informed but still look after yourself

If you’re feeling like the news is particularly bad at the moment, you’re not alone. But many of us can’t look away – and don’t want to. Engaging with news can help us make ...