The Times Australia
The Times World News

.

A quantum computing startup says it is already making millions of light-powered chips

  • Written by Christopher Ferrie, A/Prof, UTS Chancellor's Postdoctoral Research and ARC DECRA Fellow, University of Technology Sydney

American quantum computing startup PsiQuantum announced yesterday that it has cracked a significant puzzle on the road to making the technology useful: manufacturing quantum chips in useful quantities.

PsiQuantum burst out of “stealth mode” in 2021 with a blockbuster[1] funding announcement. It followed up[2] with two more last year[3].

The company uses so-called “photonic” quantum computing, which has long been dismissed as impractical.

The approach, which encodes data in individual particles of light, offers some compelling advantages — low noise, high-speed operation, and natural compatibility with existing fibre-optic networks. However, it was held back by extreme hardware demands to manage the fact photons fly with blinding speed, get lost, and are hard to create and detect.

PsiQuantum now claims to have addressed many of these difficulties. Yesterday, in a new peer-reviewed paper published in Nature[4], the company unveiled hardware for photonic quantum computing they say can be manufactured in large quantities and solves the problem of scaling up the system.

What’s in a quantum computer?

Like any computer, quantum computers encode information in physical systems. Whereas digital computers encode bits (0s and 1s) in transistors, quantum computers use quantum bits (qubits), which can be encoded in many potential quantum systems.

Photo of a complex brass device.
Superconducting quantum computers require an elaborate cooling rig to keep them at temperatures close to absolute zero. Rigetti

The darlings of the quantum computing world have traditionally been superconducting circuits running at temperatures near absolute zero. These have been championed by companies such as Google[5], IBM[6], and Rigetti[7].

These systems have attracted headlines claiming “quantum supremacy[8]” (where quantum computers beat traditional computers at some task) or the ushering in of “quantum utility[9]” (that is, actually useful quantum computers).

In a close second in the headline grabbing game, IonQ[10] and Honeywell[11] are pursuing trapped-ion quantum computing. In this approach, charged atoms are captured in special electromagnetic traps that encode qubits in their energy states.

Other commercial contenders include neutral atom[12] qubits, silicon based[13] qubits, intentional defects in diamonds[14], and non-traditional photonic encodings[15].

All of these are available now. Some are for sale with enormous price tags and some are accessible through the cloud. But fair warning: they are more for experimentation than computation today.

Faults and how to tolerate them

The individual bits in your digital computers are extraordinarily reliable. They might experience a fault (a 0 inadvertently flips to a 1, for example) once in every trillion operations.

PsiQuantum’s new platform has impressive-sounding features such as low-loss silicon nitride waveguides, high-efficiency photon-number-resolving detectors, and near-lossless interconnects.

The company reports a 0.02% error rate for single-qubit operations and 0.8% for two-qubit creation. These may seem like quite small numbers, but they are much bigger than the effectively zero error rate of the chip in your smartphone.

However, these numbers rival the best qubits today and are surprisingly encouraging.

One of the most critical breakthroughs in the PsiQuantum system is the integration of fusion-based quantum computing[16]. This is a model that allows for errors to be corrected more easily than in traditional approaches.

Quantum computer developers want to achieve what is called “fault tolerance”. This means that, if the basic error rate is below a certain threshold, the errors can be suppressed indefinitely.

Claims of “below threshold” error rates should be met with skepticism, as they are generally measured on a few qubits. A practical quantum computer would be a very different environment, where each qubit would have to function alongside a million (or a billion, or a trillion) others.

This is the fundamental challenge of scalability. And while most quantum computing companies are tackling the problem from the ground up – building individual qubits and sticking them together – PsiQuantum is taking the top down approach.

Scale-first thinking

PsiQuantum developed its system in partnership with semiconductor manufacturer GlobalFoundries. All the key components – photon sources and detectors, logic gates and error correction – are integrated on single silicon-based chip.

PsiQuantum says[17] GlobalFoundries has already made millions of the chips.

Diagram
A diagram showing the different components of PsiQuantum’s photonic chip. PsiQuantum

By making use of techniques already used to fabricate semiconductors, PsiQuantum claims to have solved the scalability issue that has long plagued photonic approaches.

PsiQuantum is fabricating their chips in a commercial semiconductor foundry. This means scaling to millions of qubits will be relatively straightforward.

If PsiQuantum’s technology delivers on its promise, it could mark the beginning of quantum computing’s first truly scalable era.

A fault-tolerant photonic quantum computer would have major advantages and lower energy requirements.

References

  1. ^ a blockbuster (www.wsj.com)
  2. ^ followed up (theconversation.com)
  3. ^ last year (theconversation.com)
  4. ^ peer-reviewed paper published in Nature (www.nature.com)
  5. ^ Google (quantumai.google)
  6. ^ IBM (www.ibm.com)
  7. ^ Rigetti (www.rigetti.com)
  8. ^ quantum supremacy (theconversation.com)
  9. ^ quantum utility (theconversation.com)
  10. ^ IonQ (ionq.com)
  11. ^ Honeywell (www.honeywell.com)
  12. ^ neutral atom (www.quera.com)
  13. ^ silicon based (quantummotion.tech)
  14. ^ defects in diamonds (quantumbrilliance.com)
  15. ^ photonic encodings (www.xanadu.ai)
  16. ^ fusion-based quantum computing (www.nature.com)
  17. ^ says (www.reuters.com)

Read more https://theconversation.com/a-quantum-computing-startup-says-it-is-already-making-millions-of-light-powered-chips-251057

Times Magazine

Building a Strong Online Presence with Katoomba Web Design

Katoomba web design is more than just creating a website that looks good—it’s about building an online presence that reflects your brand, engages your audience, and drives results. For local businesses in the Blue Mountains, a well-designed website a...

September Sunset Polo

International Polo Tour To Bridge Historic Sport, Life-Changing Philanthropy, and Breath-Taking Beauty On Saturday, September 6th, history will be made as the International Polo Tour (IPT), a sports leader headquartered here in South Florida...

5 Ways Microsoft Fabric Simplifies Your Data Analytics Workflow

In today's data-driven world, businesses are constantly seeking ways to streamline their data analytics processes. The sheer volume and complexity of data can be overwhelming, often leading to bottlenecks and inefficiencies. Enter the innovative da...

7 Questions to Ask Before You Sign IT Support Companies in Sydney

Choosing an IT partner can feel like buying an insurance policy you hope you never need. The right choice keeps your team productive, your data safe, and your budget predictable. The wrong choice shows up as slow tickets, surprise bills, and risky sh...

Choosing the Right Legal Aid Lawyer in Sutherland Shire: Key Considerations

Legal aid services play an essential role in ensuring access to justice for all. For people in the Sutherland Shire who may not have the financial means to pay for private legal assistance, legal aid ensures that everyone has access to representa...

Watercolor vs. Oil vs. Digital: Which Medium Fits Your Pet's Personality?

When it comes to immortalizing your pet’s unique personality in art, choosing the right medium is essential. Each artistic medium, whether watercolor, oil, or digital, has distinct qualities that can bring out the spirit of your furry friend in dif...

The Times Features

How much money do you need to be happy? Here’s what the research says

Over the next decade, Elon Musk could become the world’s first trillionaire[1]. The Tesla board recently proposed a US$1 trillion (A$1.5 trillion) compensation plan, if Musk ca...

NSW has a new fashion sector strategy – but a sustainable industry needs a federally legislated response

The New South Wales government recently announced the launch of the NSW Fashion Sector Strategy, 2025–28[1]. The strategy, developed in partnership with the Australian Fashion ...

From Garden to Gift: Why Roses Make the Perfect Present

Think back to the last time you gave or received flowers. Chances are, roses were part of the bunch, or maybe they were the whole bunch.   Roses tend to leave an impression. Even ...

Do I have insomnia? 5 reasons why you might not

Even a single night of sleep trouble can feel distressing and lonely. You toss and turn, stare at the ceiling, and wonder how you’ll cope tomorrow. No wonder many people star...

Wedding Photography Trends You Need to Know (Before You Regret Your Album)

Your wedding album should be a timeless keepsake, not something you cringe at years later. Trends may come and go, but choosing the right wedding photography approach ensures your ...

Can you say no to your doctor using an AI scribe?

Doctors’ offices were once private. But increasingly, artificial intelligence (AI) scribes (also known as digital scribes) are listening in. These tools can record and trans...