The Times Australia
The Times World News

.
The Times Real Estate

.

A quantum computing startup says it is already making millions of light-powered chips

  • Written by Christopher Ferrie, A/Prof, UTS Chancellor's Postdoctoral Research and ARC DECRA Fellow, University of Technology Sydney

American quantum computing startup PsiQuantum announced yesterday that it has cracked a significant puzzle on the road to making the technology useful: manufacturing quantum chips in useful quantities.

PsiQuantum burst out of “stealth mode” in 2021 with a blockbuster[1] funding announcement. It followed up[2] with two more last year[3].

The company uses so-called “photonic” quantum computing, which has long been dismissed as impractical.

The approach, which encodes data in individual particles of light, offers some compelling advantages — low noise, high-speed operation, and natural compatibility with existing fibre-optic networks. However, it was held back by extreme hardware demands to manage the fact photons fly with blinding speed, get lost, and are hard to create and detect.

PsiQuantum now claims to have addressed many of these difficulties. Yesterday, in a new peer-reviewed paper published in Nature[4], the company unveiled hardware for photonic quantum computing they say can be manufactured in large quantities and solves the problem of scaling up the system.

What’s in a quantum computer?

Like any computer, quantum computers encode information in physical systems. Whereas digital computers encode bits (0s and 1s) in transistors, quantum computers use quantum bits (qubits), which can be encoded in many potential quantum systems.

Photo of a complex brass device.
Superconducting quantum computers require an elaborate cooling rig to keep them at temperatures close to absolute zero. Rigetti

The darlings of the quantum computing world have traditionally been superconducting circuits running at temperatures near absolute zero. These have been championed by companies such as Google[5], IBM[6], and Rigetti[7].

These systems have attracted headlines claiming “quantum supremacy[8]” (where quantum computers beat traditional computers at some task) or the ushering in of “quantum utility[9]” (that is, actually useful quantum computers).

In a close second in the headline grabbing game, IonQ[10] and Honeywell[11] are pursuing trapped-ion quantum computing. In this approach, charged atoms are captured in special electromagnetic traps that encode qubits in their energy states.

Other commercial contenders include neutral atom[12] qubits, silicon based[13] qubits, intentional defects in diamonds[14], and non-traditional photonic encodings[15].

All of these are available now. Some are for sale with enormous price tags and some are accessible through the cloud. But fair warning: they are more for experimentation than computation today.

Faults and how to tolerate them

The individual bits in your digital computers are extraordinarily reliable. They might experience a fault (a 0 inadvertently flips to a 1, for example) once in every trillion operations.

PsiQuantum’s new platform has impressive-sounding features such as low-loss silicon nitride waveguides, high-efficiency photon-number-resolving detectors, and near-lossless interconnects.

The company reports a 0.02% error rate for single-qubit operations and 0.8% for two-qubit creation. These may seem like quite small numbers, but they are much bigger than the effectively zero error rate of the chip in your smartphone.

However, these numbers rival the best qubits today and are surprisingly encouraging.

One of the most critical breakthroughs in the PsiQuantum system is the integration of fusion-based quantum computing[16]. This is a model that allows for errors to be corrected more easily than in traditional approaches.

Quantum computer developers want to achieve what is called “fault tolerance”. This means that, if the basic error rate is below a certain threshold, the errors can be suppressed indefinitely.

Claims of “below threshold” error rates should be met with skepticism, as they are generally measured on a few qubits. A practical quantum computer would be a very different environment, where each qubit would have to function alongside a million (or a billion, or a trillion) others.

This is the fundamental challenge of scalability. And while most quantum computing companies are tackling the problem from the ground up – building individual qubits and sticking them together – PsiQuantum is taking the top down approach.

Scale-first thinking

PsiQuantum developed its system in partnership with semiconductor manufacturer GlobalFoundries. All the key components – photon sources and detectors, logic gates and error correction – are integrated on single silicon-based chip.

PsiQuantum says[17] GlobalFoundries has already made millions of the chips.

Diagram
A diagram showing the different components of PsiQuantum’s photonic chip. PsiQuantum

By making use of techniques already used to fabricate semiconductors, PsiQuantum claims to have solved the scalability issue that has long plagued photonic approaches.

PsiQuantum is fabricating their chips in a commercial semiconductor foundry. This means scaling to millions of qubits will be relatively straightforward.

If PsiQuantum’s technology delivers on its promise, it could mark the beginning of quantum computing’s first truly scalable era.

A fault-tolerant photonic quantum computer would have major advantages and lower energy requirements.

References

  1. ^ a blockbuster (www.wsj.com)
  2. ^ followed up (theconversation.com)
  3. ^ last year (theconversation.com)
  4. ^ peer-reviewed paper published in Nature (www.nature.com)
  5. ^ Google (quantumai.google)
  6. ^ IBM (www.ibm.com)
  7. ^ Rigetti (www.rigetti.com)
  8. ^ quantum supremacy (theconversation.com)
  9. ^ quantum utility (theconversation.com)
  10. ^ IonQ (ionq.com)
  11. ^ Honeywell (www.honeywell.com)
  12. ^ neutral atom (www.quera.com)
  13. ^ silicon based (quantummotion.tech)
  14. ^ defects in diamonds (quantumbrilliance.com)
  15. ^ photonic encodings (www.xanadu.ai)
  16. ^ fusion-based quantum computing (www.nature.com)
  17. ^ says (www.reuters.com)

Read more https://theconversation.com/a-quantum-computing-startup-says-it-is-already-making-millions-of-light-powered-chips-251057

The Times Features

Optimal Locations for Smoke Alarms in Australian Homes

Smoke alarms play a crucial role in ensuring the safety of homes across Australia. They are essential in alerting occupants at the earliest signs of a fire, allowing enough time ...

10 Smart Ways Australians Can Slash Their Electricity Bills in 2025

Electricity prices in Australia continue to rise, but that does not mean you have to sacrifice your lifestyle to save money. By making a few smart changes, you can lower your pow...

Trusted Healthcare Construction Company for Modern Facilities

Achieving quality, safety, and innovative medical facilities is challenging in an ever-changing healthcare world without collaboration with a trusted healthcare construction comp...

How to Treat Hair Loss Without a Hair Transplant

Understanding Hair Loss Hair loss can significantly affect individuals, both physically and emotionally. Identifying the causes and types can help address the issue more effecti...

How to Find a Trustworthy Professional for Your Plumbing Needs

Nowra is an idyllic locality often referred to as the city of the Shoalhaven City Council in the South Coast region of New South Wales, Australia. This picturesque suburb feature...

How to Choose a Mattress for Back/Neck Pain and All Sleepers?

Waking up with a stiff neck or aching back can derail your entire day. If you're one of the millions struggling with chronic pain, a supportive mattress is more than a luxury – i...

Times Magazine

The Essential Guide to Transforming Office Spaces for Maximum Efficiency

Why Office Fitouts MatterA well-designed office can make all the difference in productivity, employee satisfaction, and client impressions. Businesses of all sizes are investing in updated office spaces to create environments that foster collaborat...

The A/B Testing Revolution: How AI Optimized Landing Pages Without Human Input

A/B testing was always integral to the web-based marketing world. Was there a button that converted better? Marketing could pit one against the other and see which option worked better. This was always through human observation, and over time, as d...

Using Countdown Timers in Email: Do They Really Increase Conversions?

In a world that's always on, where marketers are attempting to entice a subscriber and get them to convert on the same screen with one email, the power of urgency is sometimes the essential element needed. One of the most popular ways to create urg...

Types of Software Consultants

In today's technology-driven world, businesses often seek the expertise of software consultants to navigate complex software needs. There are several types of software consultants, including solution architects, project managers, and user experienc...

CWU Assistive Tech Hub is Changing Lives: Win a Free Rollator Walker This Easter!

🌟 Mobility. Independence. Community. All in One. This Easter, the CWU Assistive Tech Hub is pleased to support the Banyule community by giving away a rollator walker. The giveaway will take place during the Macleod Village Easter Egg Hunt & Ma...

"Eternal Nurture" by Cara Barilla: A Timeless Collection of Wisdom and Healing

Renowned Sydney-born author and educator Cara Barilla has released her latest book, Eternal Nurture, a profound collection of inspirational quotes designed to support mindfulness, emotional healing, and personal growth. With a deep commitment to ...

LayBy Shopping