The Times Australia
The Times World News

.

AI is not a magic wand – it has built-in problems that are difficult to fix and can be dangerous

  • Written by Niusha Shafiabady, Associate Professor in Computational Intelligence, Charles Darwin University
AI is not a magic wand – it has built-in problems that are difficult to fix and can be dangerous

By now, all of us have heard and read a lot about artificial intelligence (AI). You’ve likely used some of the countless AI tools[1] that are becoming available. For some, AI feels like a magic wand that predicts the future.

But AI is not perfect. A supermarket meal planner in Aotearoa New Zealand gave customers poisonous recipes[2], a New York City chatbot advised people to break the law[3], and Google’s AI Overview is telling people to eat rocks[4].

At its core, an AI tool is a particular system that addresses a particular problem[5]. With any AI system, we should match our expectations to its abilities – and many of those come down to how the AI was built.

Let’s explore some inherent shortcomings of AI systems.

Trouble in the real world

One of the inherent issues for all AI systems is that they are not 100% accurate in real-world settings. For example, a predictive AI system will be trained using data points from the past.

If the AI then comes across something new – not similar to anything in the training data – it most likely won’t be able to make the correct decision.

As a hypothetical example, let’s take a military plane equipped with an AI-powered autopilot system. This system will function thanks to its training “knowledge base”. But an AI really isn’t a magic wand, it’s just mathematical computations. An adversary could create obstacles the plane AI cannot “see” because they are not in the training data, leading to potentially catastrophic consequences.

Unfortunately, there is not much we can do about this problem apart from trying to train the AI for all possible circumstances that we know of. This can sometimes be an insurmountable task.

Bias in the training data

You may have heard about AI making biased decisions[6]. Usually, bias happens when we have unbalanced data. In simple terms, this means that when training the AI system, we are showing it too many examples of one type of outcome and very few of another type.

Let’s take the example of an AI system trained to predict the likelihood a given individual will commit a crime[7]. If the crime data used for training the system mostly contains people from group A (say, a particular ethnicity) and very few from group B, the system won’t learn about both groups equally.

As a result, its predictions for group A will make it seem these people are more likely to commit crimes compared to people from group B. If the system is used uncritically, the presence of this bias can have severe ethical consequences[8].

Thankfully, developers can address this issue by “balancing” the data set. This can involve different approaches, including the use of synthetic[9] data – computer-generated, pre-labelled data built for testing and training AI[10] that has checks built into it to protect against bias.

A group of people are passing each other in the street with a surveillance overlay of white box outlines.
Having balanced data is critical to prevent AI systems from perpetuating bias. Comuzi/© BBC/Better Images of AI/Surveillance View A., CC BY[11][12]

Being out of date

Another issue with AI can arise when it’s been trained “offline”[13] and isn’t up to date with the dynamics of the problem it is meant to work on.

A simple example would be an AI system developed to predict daily temperature in a city. Its training data contain all the past information on temperature data for this location.

After the AI has finished training and is deployed, let’s say a severe climactic event disrupts the usual weather dynamics. Since the AI system making the predictions was trained on data that didn’t include this disruption, its predictions will become increasingly inaccurate.

The way to solve this issue is training the AI “online”[14], meaning it is regularly shown the latest temperature data while being used to predict temperatures.

This sounds like a great solution, but there are a few risks associated with online training. We can leave the AI system to train itself using the latest data, but it may get out of control.

Fundamentally, this can happen because of chaos theory[15], which, in simple terms, means most AI systems are sensitive to initial conditions. When we don’t know what data the system will come across, we can’t know how to tune the initial conditions to control potential instabilities in the future.

When the data isn’t right

Sometimes, the training data just isn’t fit for purpose. For example, it may not have the qualities the AI system needs to perform whatever task we are training it to do.

To use an extremely simplified example, imagine an AI tool for identifying “tall” and “short” people. In the training data, should a person who is 170cm be labelled tall or short? If tall, what will the system return when it comes across someone who is 169.5cm? (Perhaps the best solution would be to add a “medium” label.)

The above may seem trivial, but issues with data labelling or poor data sets can have problematic consequences if the AI system is involved in medical diagnosis[16], for example.

Fixing this problem is not easy, since identifying the relevant pieces of information requires a great deal of knowledge and experience. Bringing on board a subject matter expert in the data collection process can be a great solution, as it can guide the developers on what types of data to even include to begin with.

As (future) users of AI and technology, it is important for all of us to be aware of these issues to broaden our perspective on AI and its prediction outcomes concerning different aspects of our lives.

References

  1. ^ some of the countless AI tools (www.futuretools.io)
  2. ^ poisonous recipes (www.forbes.com)
  3. ^ advised people to break the law (tech.co)
  4. ^ telling people to eat rocks (theconversation.com)
  5. ^ particular system that addresses a particular problem (theconversation.com)
  6. ^ AI making biased decisions (www.mdpi.com)
  7. ^ will commit a crime (theconversation.com)
  8. ^ severe ethical consequences (theconversation.com)
  9. ^ synthetic (research.ibm.com)
  10. ^ for testing and training AI (journals.plos.org)
  11. ^ Comuzi/© BBC/Better Images of AI/Surveillance View A. (betterimagesofai.org)
  12. ^ CC BY (creativecommons.org)
  13. ^ it’s been trained “offline” (www.sciencedirect.com)
  14. ^ training the AI “online” (www.ibm.com)
  15. ^ chaos theory (fractalfoundation.org)
  16. ^ AI system is involved in medical diagnosis (theconversation.com)

Read more https://theconversation.com/ai-is-not-a-magic-wand-it-has-built-in-problems-that-are-difficult-to-fix-and-can-be-dangerous-230878

Times Magazine

Headless CMS in Digital Twins and 3D Product Experiences

Image by freepik As the metaverse becomes more advanced and accessible, it's clear that multiple sectors will use digital twins and 3D product experiences to visualize, connect, and streamline efforts better. A digital twin is a virtual replica of ...

The Decline of Hyper-Casual: How Mid-Core Mobile Games Took Over in 2025

In recent years, the mobile gaming landscape has undergone a significant transformation, with mid-core mobile games emerging as the dominant force in app stores by 2025. This shift is underpinned by changing user habits and evolving monetization tr...

Understanding ITIL 4 and PRINCE2 Project Management Synergy

Key Highlights ITIL 4 focuses on IT service management, emphasising continual improvement and value creation through modern digital transformation approaches. PRINCE2 project management supports systematic planning and execution of projects wit...

What AI Adoption Means for the Future of Workplace Risk Management

Image by freepik As industrial operations become more complex and fast-paced, the risks faced by workers and employers alike continue to grow. Traditional safety models—reliant on manual oversight, reactive investigations, and standardised checklist...

From Beach Bops to Alpine Anthems: Your Sonos Survival Guide for a Long Weekend Escape

Alright, fellow adventurers and relaxation enthusiasts! So, you've packed your bags, charged your devices, and mentally prepared for that glorious King's Birthday long weekend. But hold on, are you really ready? Because a true long weekend warrior kn...

Effective Commercial Pest Control Solutions for a Safer Workplace

Keeping a workplace clean, safe, and free from pests is essential for maintaining productivity, protecting employee health, and upholding a company's reputation. Pests pose health risks, can cause structural damage, and can lead to serious legal an...

The Times Features

Duke of Dural to Get Rooftop Bar as New Owners Invest in Venue Upgrade

The Duke of Dural, in Sydney’s north-west, is set for a major uplift under new ownership, following its acquisition by hospitality group Good Beer Company this week. Led by resp...

Prefab’s Second Life: Why Australia’s Backyard Boom Needs a Circular Makeover

The humble granny flat is being reimagined not just as a fix for housing shortages, but as a cornerstone of circular, factory-built architecture. But are our systems ready to s...

Melbourne’s Burglary Boom: Break-Ins Surge Nearly 25%

Victorian homeowners are being warned to act now, as rising break-ins and falling arrest rates paint a worrying picture for suburban safety. Melbourne residents are facing an ...

Exploring the Curriculum at a Modern Junior School in Melbourne

Key Highlights The curriculum at junior schools emphasises whole-person development, catering to children’s physical, emotional, and intellectual needs. It ensures early year...

Distressed by all the bad news? Here’s how to stay informed but still look after yourself

If you’re feeling like the news is particularly bad at the moment, you’re not alone. But many of us can’t look away – and don’t want to. Engaging with news can help us make ...

The Role of Your GP in Creating a Chronic Disease Management Plan That Works

Living with a long-term condition, whether that is diabetes, asthma, arthritis or heart disease, means making hundreds of small decisions every day. You plan your diet against m...