The Times Australia
The Times World News

.
The Times Real Estate

.

A neutrino portrait of our galaxy reveals high-energy particles from within the Milky Way

  • Written by Jenni Adams, Professor, Physics and Astronomy, University of Canterbury
A neutrino portrait of our galaxy reveals high-energy particles from within the Milky Way

Our Milky Way galaxy is an awe-inspiring feature of the night sky, viewable with the naked eye as a hazy band of stars stretching from horizon to horizon.

For the first time, the IceCube Neutrino Observatory in Antarctica has produced an image of the Milky Way using neutrinos – tiny, ghost-like astronomical messengers.

A photo of the band of the Milky Way with extra shading in blue.
A portrait of the Milky Way combining visible light and neutrino emissions (in blue). IceCube Collaboration/US National Science Foundation (Lily Le & Shawn Johnson)/ESO (S. Brunier)

In research published today[1] in the journal Science, the IceCube Collaboration – an international group of more than 350 scientists – presents evidence of high-energy neutrino emission coming from the Milky Way.

We have not yet figured out exactly where in our galaxy these particles are coming from. But today’s result brings us closer to finding some of the galaxy’s most extreme environments.

Neutrino astronomy

Neutrinos offer a unique view of the cosmos as they can travel directly from places no other radiation or particles can escape from. This makes them very interesting to astronomers, because neutrinos offer a window into the extreme cosmic environments that create another kind of particle called cosmic rays.

Cosmic rays are high-energy particles that permeate our Universe, but their origins are difficult to pin down. Cosmic rays are electrically charged, which means their path through space is scrambled by magnetic fields, and by the time one arrives at Earth there is no way to tell where it came from.

Read more: Spotting astrophysical neutrinos is just the tip of the IceCube[2]

However, the environments that accelerate cosmic rays to extraordinary energies also produce neutrinos – and neutrinos have no electric charge, so they travel in nice straight lines. So if we can detect the path of neutrinos arriving at Earth, this will point back to where the neutrinos were created.

But detecting those neutrinos is not so easy.

How to hunt neutrinos

The IceCube Neutrino Observatory is not far from the South Pole. It uses more than 5,000 light sensors arrayed throughout a cubic kilometre of pristine Antarctic ice to search for signs of high-energy neutrinos from our galaxy and beyond.

Vast numbers of neutrinos are streaming through Earth all the time, but only a tiny fraction of them bump into anything on their way through.

Each neutrino interaction makes a tiny flash of light – and those tiny flashes are what the IceCube sensors look out for. The direction and energy of the neutrino can be determined from the amount and pattern of light detected.

IceCube Collaboration IceCube has previously detected high-energy neutrinos coming from outside the Milky Way. However, it has been more challenging to isolate the lower-energy neutrinos coming from within our galaxy. This is because some flashes IceCube detected can be traced to cosmic rays hitting Earth’s atmosphere, which create neutrinos and other particles called muons. To filter out these flashes, IceCube researchers have developed ways to distinguish particles created in the atmosphere and those from further afield by the shape of the light patterns they create in the ice. Read more: An Antarctic neutrino telescope has detected a signal from the heart of a nearby active galaxy[3] Filtering out the unwanted detections has made IceCube more sensitive to astrophysical neutrinos. The final breakthrough that allowed the creation of a neutrino image of the Milky Way came from machine-learning methods that improve the identification of cascades of light produced by neutrinos, as well as the determination of the neutrino’s direction and energy. Closing in on cosmic rays The new neutrino lens on our galaxy will help reveal where the most powerful accelerators of galactic cosmic rays are located. We hope to learn how energetic these particles can get, and the inner workings of these high-energy galactic engines. However, we are yet to pinpoint these accelerators within the Milky Way. The new IceCube analysis found evidence for neutrinos coming from broad regions of the galaxy, but was not able to discern individual sources. Our team, at the University of Canterbury in New Zealand and the University of Adelaide in Australia, has a plan to realise that next step. Five views of the Milky Way: the top two bands show visible light and gamma rays, while the lower three show expected and real neutrino results, plus a measure of the significance of neutrino events detected by IceCube. IceCube Collaboration We are making models to predict the neutrino signal close to likely particle accelerators so we can target our searches for neutrinos. Undergraduate student Rhia Hewett and PhD student Ryan Burley are examining pairs of accelerator candidates and molecular dust clouds. They plan to estimate the flux of neutrinos produced by cosmic rays interacting in the clouds, after the neutrinos travel from the accelerators. They will use their results to enable a focused search of IceCube data for the sources of neutrino emissions. We believe this will provide the key to using IceCube to unlock the secrets of the most energetic processes in the Milky Way. A timeline of neutrino astronomy. IceCube Collaboration References^ research published today (dx.doi.org)^ Spotting astrophysical neutrinos is just the tip of the IceCube (theconversation.com)^ An Antarctic neutrino telescope has detected a signal from the heart of a nearby active galaxy (theconversation.com)

Read more https://theconversation.com/a-neutrino-portrait-of-our-galaxy-reveals-high-energy-particles-from-within-the-milky-way-208622

The Times Features

Getting the Best Value for Money on Your Next Luxury Car Hire in Sydney

Are you wondering why you need to hire a luxury car when you are in Sydney? Can it be worth the buck when compared with standard car rentals? If you want to know why a lot of peopl...

5 Fun Ways to Use Light-Up Letters at Your Party

Planning a party or special event always involves deciding how to decorate the venue. Whether you're just decorating a small area or the entire space, ample thought is given to t...

The Art of Stone Selection: A Guide to Choosing the Right Type of Stone for Different Furniture Pieces

Stone furniture has become a hallmark of elegance and durability in modern and traditional homes alike. From sleek marble coffee tables to sturdy granite benches, the right stone...

Important things to consider before buying a new TV

The way that people live their everyday lives continues to evolve as new technology becomes available. Those who purchase a home are making what is likely to be one of their larg...

Cast vs. Minted Gold Bars: Key Differences Every Investor Should Know

Investing in gold bars is one of the most dependable ways of preserving one's wealth and diversifying one's portfolio. However, not all gold bars are minted equally. Understanding...

Understanding the Common Challenges Addressed by Child Psychologists

Parenting is challenging, especially when children have emotional, behavioural, or developmental problems. Child psychologists are experts who focus on dealing with such issues...

Times Magazine

Top Tips for Finding a Great Florist for Your Sydney Wedding

While the choice of wedding venue does much of the heavy lifting when it comes to wowing guests, decorations are certainly not far behind. They can add a bit of personality and flair to the traditional proceedings, as well as enhancing the venue’s ...

Avant Stone's 2025 Nature's Palette Collection

Avant Stone, a longstanding supplier of quality natural stone in Sydney, introduces the 2025 Nature’s Palette Collection. Curated for architects, designers, and homeowners with discerning tastes, this selection highlights classic and contemporary a...

Professional-Grade Tactical Gear: Why 5.11 Tactical Leads the Field

When you're out in the field, your gear has to perform at the same level as you. In the world of high-quality equipment, 5.11 Tactical has established itself as a standard for professionals who demand dependability. Regardless of whether you’re inv...

Lessons from the Past: Historical Maritime Disasters and Their Influence on Modern Safety Regulations

Maritime history is filled with tales of bravery, innovation, and, unfortunately, tragedy. These historical disasters serve as stark reminders of the challenges posed by the seas and have driven significant advancements in maritime safety regulat...

What workers really think about workplace AI assistants

Imagine starting your workday with an AI assistant that not only helps you write emails[1] but also tracks your productivity[2], suggests breathing exercises[3], monitors your mood and stress levels[4] and summarises meetings[5]. This is not a f...

Aussies, Clear Out Old Phones –Turn Them into Cash Now!

Still, holding onto that old phone in your drawer? You’re not alone. Upgrading to the latest iPhone is exciting, but figuring out what to do with the old one can be a hassle. The good news? Your old iPhone isn’t just sitting there it’s potential ca...

LayBy Shopping