The Times Australia
The Times World News

.

A neutrino portrait of our galaxy reveals high-energy particles from within the Milky Way

  • Written by Jenni Adams, Professor, Physics and Astronomy, University of Canterbury
A neutrino portrait of our galaxy reveals high-energy particles from within the Milky Way

Our Milky Way galaxy is an awe-inspiring feature of the night sky, viewable with the naked eye as a hazy band of stars stretching from horizon to horizon.

For the first time, the IceCube Neutrino Observatory in Antarctica has produced an image of the Milky Way using neutrinos – tiny, ghost-like astronomical messengers.

A photo of the band of the Milky Way with extra shading in blue.
A portrait of the Milky Way combining visible light and neutrino emissions (in blue). IceCube Collaboration/US National Science Foundation (Lily Le & Shawn Johnson)/ESO (S. Brunier)

In research published today[1] in the journal Science, the IceCube Collaboration – an international group of more than 350 scientists – presents evidence of high-energy neutrino emission coming from the Milky Way.

We have not yet figured out exactly where in our galaxy these particles are coming from. But today’s result brings us closer to finding some of the galaxy’s most extreme environments.

Neutrino astronomy

Neutrinos offer a unique view of the cosmos as they can travel directly from places no other radiation or particles can escape from. This makes them very interesting to astronomers, because neutrinos offer a window into the extreme cosmic environments that create another kind of particle called cosmic rays.

Cosmic rays are high-energy particles that permeate our Universe, but their origins are difficult to pin down. Cosmic rays are electrically charged, which means their path through space is scrambled by magnetic fields, and by the time one arrives at Earth there is no way to tell where it came from.

Read more: Spotting astrophysical neutrinos is just the tip of the IceCube[2]

However, the environments that accelerate cosmic rays to extraordinary energies also produce neutrinos – and neutrinos have no electric charge, so they travel in nice straight lines. So if we can detect the path of neutrinos arriving at Earth, this will point back to where the neutrinos were created.

But detecting those neutrinos is not so easy.

How to hunt neutrinos

The IceCube Neutrino Observatory is not far from the South Pole. It uses more than 5,000 light sensors arrayed throughout a cubic kilometre of pristine Antarctic ice to search for signs of high-energy neutrinos from our galaxy and beyond.

Vast numbers of neutrinos are streaming through Earth all the time, but only a tiny fraction of them bump into anything on their way through.

Each neutrino interaction makes a tiny flash of light – and those tiny flashes are what the IceCube sensors look out for. The direction and energy of the neutrino can be determined from the amount and pattern of light detected.

IceCube Collaboration IceCube has previously detected high-energy neutrinos coming from outside the Milky Way. However, it has been more challenging to isolate the lower-energy neutrinos coming from within our galaxy. This is because some flashes IceCube detected can be traced to cosmic rays hitting Earth’s atmosphere, which create neutrinos and other particles called muons. To filter out these flashes, IceCube researchers have developed ways to distinguish particles created in the atmosphere and those from further afield by the shape of the light patterns they create in the ice. Read more: An Antarctic neutrino telescope has detected a signal from the heart of a nearby active galaxy[3] Filtering out the unwanted detections has made IceCube more sensitive to astrophysical neutrinos. The final breakthrough that allowed the creation of a neutrino image of the Milky Way came from machine-learning methods that improve the identification of cascades of light produced by neutrinos, as well as the determination of the neutrino’s direction and energy. Closing in on cosmic rays The new neutrino lens on our galaxy will help reveal where the most powerful accelerators of galactic cosmic rays are located. We hope to learn how energetic these particles can get, and the inner workings of these high-energy galactic engines. However, we are yet to pinpoint these accelerators within the Milky Way. The new IceCube analysis found evidence for neutrinos coming from broad regions of the galaxy, but was not able to discern individual sources. Our team, at the University of Canterbury in New Zealand and the University of Adelaide in Australia, has a plan to realise that next step. Five views of the Milky Way: the top two bands show visible light and gamma rays, while the lower three show expected and real neutrino results, plus a measure of the significance of neutrino events detected by IceCube. IceCube Collaboration We are making models to predict the neutrino signal close to likely particle accelerators so we can target our searches for neutrinos. Undergraduate student Rhia Hewett and PhD student Ryan Burley are examining pairs of accelerator candidates and molecular dust clouds. They plan to estimate the flux of neutrinos produced by cosmic rays interacting in the clouds, after the neutrinos travel from the accelerators. They will use their results to enable a focused search of IceCube data for the sources of neutrino emissions. We believe this will provide the key to using IceCube to unlock the secrets of the most energetic processes in the Milky Way. A timeline of neutrino astronomy. IceCube Collaboration References^ research published today (dx.doi.org)^ Spotting astrophysical neutrinos is just the tip of the IceCube (theconversation.com)^ An Antarctic neutrino telescope has detected a signal from the heart of a nearby active galaxy (theconversation.com)

Read more https://theconversation.com/a-neutrino-portrait-of-our-galaxy-reveals-high-energy-particles-from-within-the-milky-way-208622

Times Magazine

DIY Is In: How Aussie Parents Are Redefining Birthday Parties

When planning his daughter’s birthday, Rich opted for a DIY approach, inspired by her love for drawing maps and giving clues. Their weekend tradition of hiding treats at home sparked the idea, and with a pirate ship playground already chosen as t...

When Touchscreens Turn Temperamental: What to Do Before You Panic

When your touchscreen starts acting up, ignoring taps, registering phantom touches, or freezing entirely, it can feel like your entire setup is falling apart. Before you rush to replace the device, it’s worth taking a deep breath and exploring what c...

Why Social Media Marketing Matters for Businesses in Australia

Today social media is a big part of daily life. All over Australia people use Facebook, Instagram, TikTok , LinkedIn and Twitter to stay connected, share updates and find new ideas. For businesses this means a great chance to reach new customers and...

Building an AI-First Culture in Your Company

AI isn't just something to think about anymore - it's becoming part of how we live and work, whether we like it or not. At the office, it definitely helps us move faster. But here's the thing: just using tools like ChatGPT or plugging AI into your wo...

Data Management Isn't Just About Tech—Here’s Why It’s a Human Problem Too

Photo by Kevin Kuby Manuel O. Diaz Jr.We live in a world drowning in data. Every click, swipe, medical scan, and financial transaction generates information, so much that managing it all has become one of the biggest challenges of our digital age. Bu...

Headless CMS in Digital Twins and 3D Product Experiences

Image by freepik As the metaverse becomes more advanced and accessible, it's clear that multiple sectors will use digital twins and 3D product experiences to visualize, connect, and streamline efforts better. A digital twin is a virtual replica of ...

The Times Features

How to Choose a Cosmetic Clinic That Aligns With Your Aesthetic Goals

Clinics that align with your goals prioritise subtlety, safety, and client input Strong results come from experience, not trends or treatment bundles A proper consultation fe...

7 Non-Invasive Options That Can Subtly Enhance Your Features

Non-invasive treatments can refresh your appearance with minimal downtime Options range from anti-wrinkle treatments to advanced skin therapies Many results appear gradually ...

What is creatine? What does the science say about its claims to build muscle and boost brain health?

If you’ve walked down the wellness aisle at your local supermarket recently, or scrolled the latest wellness trends on social media, you’ve likely heard about creatine. Creati...

Whole House Water Filters: Essential or Optional for Australian Homes?

Access to clean, safe water is something most Australians take for granted—but the reality can be more complex. Our country’s unique climate, frequent droughts, and occasional ...

How Businesses Turn Data into Actionable Insights

In today's digital landscape, businesses are drowning in data yet thirsting for meaningful direction. The challenge isn't collecting information—it's knowing how to turn data i...

Why Mobile Allied Therapy Services Are Essential in Post-Hospital Recovery

Mobile allied health services matter more than ever under recent NDIA travel funding cuts. A quiet but critical shift is unfolding in Australia’s healthcare landscape. Mobile all...