The Times Australia
The Times World News

.
Times Media

.

We still don't know how it works

  • Written by Shane Keating, Senior Lecturer in Mathematics and Oceanography, UNSW Sydney
we still don't know how it works

Australia’s first ever Olympic curling team scored an historic win but missed the medal podium[1] at the 2022 Winter Olympic Games in Beijing. It was a remarkable performance for a team lacking any dedicated curling facilities[2] at home.

And that’s important, because it is the special properties of curling ice that allow the heavy curling stones to glide and curve in ways that seem to defy physics. In fact, scientists are still not sure what puts the “curl” in curling.

Chess on ice

Curling’s origins date back to 16th-century Scotland, making it one of the world’s oldest team sports[3]. Like golf – invented around the same time in the same part of the world – curling seems both amusingly pointless and deceptively simple to the untrained eye.

It has been called “chess on ice”, although to many Australians it most resembles frozen lawn bowls. Athletes take turns sliding circular 20-kilogram granite stones along the ice toward the centre of a horizontal target 28 metres away. Teams are awarded points for getting their stones closest to the centre of the target, or “house”.

Read more: Why curling is so gripping to watch[4]

Slippery science

The slippery science behind curling starts with the ice itself. Curling ice must be perfectly flat – far flatter than a typical ice hockey rink – and is sprayed with droplets of water before each game to produce a pebbled surface. This minimises the contact area between the ice and the heavy curling stone.

Curling stones also have a concave lower surface – like the bottom of a beer bottle – that further reduces the contact area between the stone and the ice. The effect is to increase the pressure at the base of the stone, partially melting the ice and reducing friction in a similar way to how ice skates work.

The texture of the ice and the shape of the bottom of the curling stone makes sure only a very small part of the stone touches the ice. Nariman El-Mofty / AP

Uniquely among Olympic sports, curling players can change the path of the stone after it has been “thrown”. This is achieved by vigorously sweeping the ice in front of the stone with special brooms that warm the ice and reduce friction, allowing the stone to travel farther and straighter along its path.

Deciding when, where, and how hard to sweep has a big influence on the stone’s trajectory; so naturally it is accompanied by a great deal of enthusiastic yelling.

Give it a spin

By adding a small amount of spin, skilled players can make their stone “curl” along a curving path to block an opponent’s stone or knock it out of the way. Even a small amount of rotation can deflect the path of the curling stone by as much as a metre and a half. How exactly the curling stone does this is something of a puzzle[5].

Let’s start with a (literal) tabletop experiment. Slide an upturned glass along a table, adding a little spin as it leaves your hand. With a little practice (and perhaps a few replacement glasses) you will be able to make the glass trace a curving path across the table, deflecting to the left when you spin it clockwise or to the right when you spin it anticlockwise.

The reason for this is explained by a branch of science called tribology[6], which studies the effect of friction on moving and sliding objects.

As the glass spins, it rubs against the table top, generating friction that tries to slow down the rotation of the glass. The friction forces are directed opposite to the direction of motion: for a clockwise-rotating glass, friction will be directed to the left at the front of the glass and to the right at the back of the glass.

When the spinning glass slides across the table, it leans forward slightly in the direction of travel, pushing the front lip of the glass down a little harder on the table than the trailing lip. The extra pressure generates extra friction at the front compared to the back. The resulting imbalance of friction forces causes the glass to deflect in the direction of stronger friction – to the left in the case of a clockwise-rotating glass.

A twist in the tale

But curling stones behave in exactly the opposite way: a clockwise rotation causes the stone to deflect to the right, not the left. For a long time, scientists assumed this was because of an effect called asymmetrical friction[7].

The theory goes like this: like a glass pushed across a table, a curling stone leans forward slightly. The extra pressure at the front of the stone partially melts the ice at the leading edge, creating a thin film of water that reduces the friction at the front of stone compared with the back.

The curling stone will still deflect in the direction of stronger friction. But in this case, it is the trailing edge that wins, resulting in a deflection to the right rather than the left, for a clockwise-rotating stone.

Scratch that

Like many theories, this explanation was widely accepted until someone got around to actually testing it. In 2012, a team at Uppsala University in Sweden made detailed calculations[8] of the friction forces acting on a sliding stone.

The problem they found is that curling stones rotate quite slowly, only completing a couple of turns before coming to a stop. This spin is far too small to cause a sideways deflection of a metre or more. Even odder, more rotation does not lead to more curl – in fact, spin a stone too hard and it won’t curl at all. Asymmetrical friction cannot explain such behaviour.

The researchers used an electron microscope[9] to look more closely at the ice under a curling stone. They discovered that the front edge of the stone leaves behind miniscule scratches on the ice in the direction of rotation. These scratches act as a guide for the back edge of the stone, causing the stone to deflect in the direction of rotation.

Curling stones make microscopic scratches in the pebbled surface of the ice - and according to one theory, these scratches deflect the stone’s path to the left or right. H. Nyberg, et al., Wear (2013)[10]

The Swedish team then showed that, using this “scratch-guide” mechanism, they could “steer” the sliding stones by adding artificial scratches to the ice in different directions. In one experiment, a stone was made to travel along a zigzag path by laying down scratches in alternating directions.

Their findings ignited a minor controversy[11] in the admittedly niche world of curling physics.

Competing theories have been proposed, including the pivot-slide model[12], the evaporation-abrasion model[13], and the snowplow model[14].

In 2020, a Japanese team attempted to clear things up by systematically testing each theory[15] in a curling hall using sophisticated motion-tracking equipment, a laser scanning microscope, and some sheets of sandpaper to modify the surface of the curling stone.

However, no clear winner emerged. When it comes to the science of curling, it appears we are just scratching the surface.

References

  1. ^ scored an historic win but missed the medal podium (www.smh.com.au)
  2. ^ lacking any dedicated curling facilities (www.smh.com.au)
  3. ^ one of the world’s oldest team sports (worldcurling.org)
  4. ^ Why curling is so gripping to watch (theconversation.com)
  5. ^ something of a puzzle (youtu.be)
  6. ^ tribology (en.wikipedia.org)
  7. ^ asymmetrical friction (cdnsciencepub.com)
  8. ^ made detailed calculations (link.springer.com)
  9. ^ used an electron microscope (www.sciencedirect.com)
  10. ^ H. Nyberg, et al., Wear (2013) (www.sciencedirect.com)
  11. ^ minor controversy (www.newyorker.com)
  12. ^ pivot-slide model (doi.org)
  13. ^ evaporation-abrasion model (doi.org)
  14. ^ snowplow model (cdnsciencepub.com)
  15. ^ systematically testing each theory (www.nature.com)

Read more https://theconversation.com/the-slippery-science-of-olympic-curling-we-still-dont-know-how-it-works-176463

The Times Features

Will the Wage Price Index growth ease financial pressure for households?

The Wage Price Index’s quarterly increase of 0.8% has been met with mixed reactions. While Australian wages continue to increase, it was the smallest increase in two and a half...

Back-to-School Worries? 70% of Parents Fear Their Kids Aren’t Ready for Day On

Australian parents find themselves confronting a key decision: should they hold back their child on the age border for another year before starting school? Recent research from...

Democratising Property Investment: How MezFi is Opening Doors for Everyday Retail Investors

The launch of MezFi today [Friday 15th November] marks a watershed moment in Australian investment history – not just because we're introducing something entirely new, but becaus...

Game of Influence: How Cricket is Losing Its Global Credibility

be losing its credibility on the global stage. As other sports continue to capture global audiences and inspire unity, cricket finds itself increasingly embroiled in political ...

Amazon Australia and DoorDash announce two-year DashPass offer only for Prime members

New and existing Prime members in Australia can enjoy a two-year membership to DashPass for free, and gain access to AU$0 delivery fees on eligible DoorDash orders New offer co...

6 things to do if your child’s weight is beyond the ideal range – and 1 thing to avoid

One of the more significant challenges we face as parents is making sure our kids are growing at a healthy rate. To manage this, we take them for regular check-ups with our GP...

Times Magazine

Safety Measures For Commercial Refrigeration

For many businesses, concerns around commercial refrigeration revolve around cost, efficiency, and maintenance; it’s easy to notice when your commercial freezer or commercial cool room is suffering a performance loss and producing higher energy b...

Truck Dealers Sales and Service: Get the Best Deals on Trucks Here

Looking for the best deals on trucks near you? Truck repair shops in Australia offer a range of services and sales options that can help you get the perfect truck for your needs.  Whether you're looking for a new or used one, these professional ...

The Symbology Of Birthstones

Way back in the Middle Ages, the healers and wise men of the time thought that all gemstones held supernatural powers, a belief that continues on to this very day! The tradition still fascinates us, so let's examine the birthstones and the gift the...

The Power of Tech in Business and How Mobile Solutions are Changing the Game

Technology is not just an option but a necessity, particularly in today’s fast-paced business world. From mobile apps to cloud-based accounting software, businesses are now more tech-driven than ever. Whether you are running a small local operation...

Power Racks are the Ultimate Tool for Building Muscle and Strength

Power racks are an essential piece of equipment for anyone who wants to take their weightlifting and strength training to the next level. These racks offer several benefits that can help you reach your fitness goals more effectively and safely. In ...

Stress & anxiety tech that teaches people to breathe properly

  Innovative new breathing tool bobi (breathe out, breathe in) officially launches in Australia and takes centre stage as Gold Winner at the Good Design Awards bobi, a groundbreaking new product designed to help people to manage stress and anxiety...