The Times Australia
Fisher and Paykel Appliances
The Times World News

.

A huge project is underway to sequence the genome of every complex species on Earth

  • Written by Jenny Graves, Distinguished Professor of Genetics and Vice Chancellor's Fellow, La Trobe University
A huge project is underway to sequence the genome of every complex species on Earth

The Earth Biogenome Project[1], a global consortium that aims to sequence the genomes of all complex life on earth (some 1.8 million described species) in ten years, is ramping up.

The project’s origins, aims and progress[2] are detailed in two multi-authored papers published[3] today[4]. Once complete, it will forever change the way biological research is done.

Specifically, researchers will no longer be limited to a few “model species” and will be able to mine the DNA sequence database of any organism that shows interesting characteristics. This new information will help us understand how complex life evolved, how it functions, and how biodiversity can be protected.

The project was first proposed[5] in 2016, and I was privileged to speak at its launch[6] in London in 2018. It is currently in the process of moving from its startup phase to full-scale production.

The aim of phase one is to sequence one genome from every taxonomic family on earth, some 9,400 of them. By the end of 2022, one-third of these species should be done. Phase two will see the sequencing of a representative from all 180,000 genera, and phase three will mark the completion of all the species.

The importance of weird species

The grand aim of the Earth Biogenome Project is to sequence the genomes of all 1.8 million described species of complex life on Earth. This includes all plants, animals, fungi, and single-celled organisms with true nuclei (that is, all “eukaryotes”).

While model organisms like mice, rock cress, fruit flies and nematodes have been tremendously important in our understanding of gene functions, it’s a huge advantage to be able to study other species that may work a bit differently.

Many important biological principles came from studying obscure organisms. For instance, genes were famously discovered by Gregor Mendel in peas, and the rules that govern them were discovered in red bread mould.

DNA was discovered first in salmon sperm, and our knowledge of some systems that keep it secure came from research on tardigrades. Chromosomes were first seen in mealworms and sex chromosomes in a beetle (sex chromosome action and evolution has also been explored in fish and platypus). And telomeres, which cap the ends of chromosomes, were discovered in pond scum.

Answering biological questions and protecting biodiversity

Comparing closely and distantly related species provides tremendous power to discover what genes do and how they are regulated. For instance, in another PNAS paper, coincidentally also published today[7], my University of Canberra colleagues and I discovered Australian dragon lizards regulate sex by the chromosome neighbourhood of a sex gene, rather than the DNA sequence itself.

Read more: Sex lives of reptiles could leave them vulnerable to climate change[8]

Scientists also use species comparisons to trace genes and regulatory systems back to their evolutionary origins, which can reveal astonishing conservation of gene function across nearly a billion years. For instance, the same genes[9] are involved in retinal development in humans and in fruit fly photoreceptors. And the BRCA1 gene that is mutated in breast cancer is responsible for repairing DNA breaks in plants and animals.

The genome of animals is also far more conserved than has been supposed. For instance, several colleagues and I recently demonstrated that animal chromosomes are 684 million years old.

Read more: Specks of dust on the microscope slide? No, we are looking at the building blocks of our genome[10]

It will be exciting, too, to explore the “dark matter” of the genome, and reveal how DNA sequences that don’t encode proteins can still play a role in genome function and evolution.

Another important aim of the Earth Biogenome Project is conservation genomics. This field uses DNA sequencing to identify threatened species, which includes about 28% of the world’s complex organisms – helping us monitor their genetic health and advise on management.

No longer an impossible task

Until recently, sequencing large genomes took years and many millions of dollars. But there have been tremendous technical advances that now make it possible to sequence and assemble large genomes for a few thousand dollars. The entire Earth Biogenome Project will cost less in today’s dollars than the human genome project, which was worth about US$3 billion in total.

In the past, researchers would have to identify the order of the four bases chemically on millions of tiny DNA fragments, then paste the entire sequence together again. Today they can register different bases based on their physical properties, or by binding each of the four bases to a different dye. New sequencing methods[11] can scan long molecules of DNA that are tethered in tiny tubes, or squeezed through tiny holes in a membrane.

Chromosomes consist of long double-helical arrays of the four base pairs whose sequence specifies genes. DNA molecules are capped at the end by telomeres. Shutterstock

Why sequence everything?

But why not save time and money by sequencing just key representative species?

Well, the whole point of the Earth Biogenome Project is to exploit the variation between species to make comparisons, and also to capture remarkable innovations[12] in outliers.

There is also the fear of missing out. For instance, if we sequence only 69,999 of the 70,000 species of nematode, we might miss the one that could divulge the secrets of how nematodes can cause diseases in animals and plants.

There are currently 44 affiliated institutions in 22 countries working on the Earth Biogenome Project. There are also 49 affiliated projects, including enormous projects such as the California Conservation Genomics Project[13], the Bird 10,000 Genomes Project[14] and UK’s Darwin Tree of Life[15] Project, as well as many projects on particular groups such as bats and butterflies.

References

  1. ^ Earth Biogenome Project (www.earthbiogenome.org)
  2. ^ origins, aims and progress (www.pnas.org)
  3. ^ published (www.pnas.org)
  4. ^ today (www.pnas.org)
  5. ^ proposed (www.pnas.org)
  6. ^ launch (www.nature.com)
  7. ^ published today (newsconcerns.com)
  8. ^ Sex lives of reptiles could leave them vulnerable to climate change (theconversation.com)
  9. ^ same genes (www.researchgate.net)
  10. ^ Specks of dust on the microscope slide? No, we are looking at the building blocks of our genome (theconversation.com)
  11. ^ sequencing methods (www.genome.gov)
  12. ^ capture remarkable innovations (www.pnas.org)
  13. ^ California Conservation Genomics Project (www.ccgproject.org)
  14. ^ Bird 10,000 Genomes Project (b10k.genomics.cn)
  15. ^ Darwin Tree of Life (www.darwintreeoflife.org)

Read more https://theconversation.com/a-huge-project-is-underway-to-sequence-the-genome-of-every-complex-species-on-earth-175033

Times Magazine

Can bigger-is-better ‘scaling laws’ keep AI improving forever? History says we can’t be too sure

OpenAI chief executive Sam Altman – perhaps the most prominent face of the artificial intellig...

A backlash against AI imagery in ads may have begun as brands promote ‘human-made’

In a wave of new ads, brands like Heineken, Polaroid and Cadbury have started hating on artifici...

Home batteries now four times the size as new installers enter the market

Australians are investing in larger home battery set ups than ever before with data showing the ...

Q&A with Freya Alexander – the young artist transforming co-working spaces into creative galleries

As the current Artist in Residence at Hub Australia, Freya Alexander is bringing colour and creativi...

This Christmas, Give the Navman Gift That Never Stops Giving – Safety

Protect your loved one’s drives with a Navman Dash Cam.  This Christmas don’t just give – prote...

Yoto now available in Kmart and The Memo, bringing screen-free storytelling to Australian families

Yoto, the kids’ audio platform inspiring creativity and imagination around the world, has launched i...

The Times Features

Why the Mortgage Industry Needs More Women (And What We're Actually Doing About It)

I've been in fintech and the mortgage industry for about a year and a half now. My background is i...

Inflation jumps in October, adding to pressure on government to make budget savings

Annual inflation rose[1] to a 16-month high of 3.8% in October, adding to pressure on the govern...

Transforming Addiction Treatment Marketing Across Australasia & Southeast Asia

In a competitive and highly regulated space like addiction treatment, standing out online is no sm...

Aiper Scuba X1 Robotic Pool Cleaner Review: Powerful Cleaning, Smart Design

If you’re anything like me, the dream is a pool that always looks swimmable without you having to ha...

YepAI Emerges as AI Dark Horse, Launches V3 SuperAgent to Revolutionize E-commerce

November 24, 2025 – YepAI today announced the launch of its V3 SuperAgent, an enhanced AI platf...

What SMEs Should Look For When Choosing a Shared Office in 2026

Small and medium-sized enterprises remain the backbone of Australia’s economy. As of mid-2024, sma...

Anthony Albanese Probably Won’t Lead Labor Into the Next Federal Election — So Who Will?

As Australia edges closer to the next federal election, a quiet but unmistakable shift is rippli...

Top doctors tip into AI medtech capital raise a second time as Aussie start up expands globally

Medow Health AI, an Australian start up developing AI native tools for specialist doctors to  auto...

Record-breaking prize home draw offers Aussies a shot at luxury living

With home ownership slipping out of reach for many Australians, a growing number are snapping up...