The Times Australia
The Times World News

.

Specks of dust on the microscope slide? No, we are looking at the building blocks of our genome

  • Written by Jenny Graves, Distinguished Professor of Genetics and Vice Chancellor's Fellow, La Trobe University
Specks of dust on the microscope slide? No, we are looking at the building blocks of our genome

If you look at cells from a human or other mammal under a microscope, you’ll see big fat molecular complexes called chromosomes that contain our DNA. If the cells are from a bird or reptile, you’ll see a few of these chunky chromosomes but also a flotilla of tiny specks that look like broken-down pieces of chromosomes or even specks of dust.

Those specks turned out to be tiny chromosomes, but their significance has been a mystery for decades. I assembled a talented team of young genome scientists to show that these “microchromosomes” are almost identical[1], and they represent the ancient chromosomes of a spineless animal ancestor that lived 684 million years ago.

The human genome and human chromosomes

The human genome comprises about 3 billion base pairs of DNA, each one like a rung on a long, twisted ladder. If you stretched the whole genome out, it would be about 1 metre long. It contains about 20,000 genes and a lots of repetitive sequences of DNA with few known functions.

Our genome is broken up into 23 bits. We can see these bits when a cell divides into two, because during this process the DNA condenses with proteins into chromosomes (literally “staining bodies”) which we can see under the microscope. We have two copies of the genome in each of our cells (one from our mum and one from our dad), so we see 46 chromosomes in each cell.

Read more: Did sex drive mammal evolution? How one species can become two[2]

Other mammals have pretty much the same set of genes on a similar length of DNA, but it is broken up differently. Some animals have lots of small chromosomes (there is a South American rat with 51) and others have a few big ones (the swamp wallaby has only 5).

Surprisingly, other higher vertebrates (birds and reptiles), though they have somewhat smaller genomes (1 or 2 billion base pairs) have pretty much the same sets of genes – as do frogs and even fish. The genomes of all vertebrates are amazingly similar.

The story of microchromosomes

When we look at the chromosomes of birds, turtles and squamates (snakes and lizards), however, we see big differences from those of mammals. They have between six and nine normal-looking chromosome pairs, but also lots of tiny elements that at first were thought to be degraded bits of chromosome or even dust on the microscope slide.

However, it proved that these elements were present in a constant – and even – number. Most birds have 62, representing 31 pairs of tiny “microchromosomes”.

Although microchromosomes are tiny, they have the same ends (telomeres) and attachment points (centromeres) as larger chromosomes. Curiously, they seem to hang out together in the centre of the cell.

Read more: Tick, tock... how stress speeds up your chromosomes' ageing clock[3]

The real surprise came when it became possible to sequence bits of chicken microchromosome DNA and check out the genes they contained. It turned out that chick microchromosomes carry a big share of the genes[4] and contain far fewer repetitive sequences than the large “macrochromosomes”. In fact, about half the chicken genes lie on microchromosomes. This implied that microchromosomes are important parts of the bird genome[5].

But the mystery remained. Why are there two such distinct size classes of chromosomes in birds and other reptiles? And why do you always see microchromosomes huddled together in the centre of the cell?

About half the genes of a chicken are carried in microchromosomes. Fernando de Sousa, CC BY-SA[6][7]

Microchromosomes are highly conserved across birds and reptiles

Thanks to huge improvements in DNA sequencing technology, there are now well-assembled end-to-end or “telomere-to-telomere[8]” sequences of many birds and reptiles.

In our new work[9], we have lined up DNA sequences of macro- and microchromosomes between several birds, turtles and squamates. We see startling similarities in the sequences.

Emus and pigeons are only distantly related to chickens, as birds go, but they have virtually the same chromosomes. Turtles and squamates have fewer microchromosomes than birds, but the ones they do have are very similar within each group.

Turtles have fewer microchromomes than birds. Roberto Costa Pinto, CC BY-SA[10][11]

When we compared sequences between emus, turtles and squamates, we saw a high degree of homology in microchromosome DNA sequences stretching over the nearly 300 million years since these species last shared a common ancestor. Turtles and squamates each carry different subsets of emu microchromosomes. We could see the lost microchromosomes; they had fused with each other or with macrochromosomes.

This suggested that 31 bird microchromosomes was present in the genome of a common ancestor of birds and reptiles about 300 million years ago, and turtles and squamates independently lost different subsets of these.

We used new techniques[12] to reveal which bits of DNA are physically closest to which in the DNA tangle of a non-dividing cell. This showed that microchromosomes play tag with each other, and not with macrochromosomes.

This gives molecular reality to the old observations that microchromosomes lie close together in bird and reptile cells. It looks like microchromosomes form a compartment in the cell that might help the genes work together.

The tiny chromosomes of the amphioxus or lancelet are the building blocks of the genomes of modern vertebrates. Hans Hillewaert, CC BY[13][14]

Microchromosomes are ancient genetic elements

As it turns out, microchromosomes go back far, far further than the ancestral reptile: all the way to the tiny chromosomes of a very distantly related animal called the amphioxus or lancelet. Lancelets are small fish-like invertebrates that last shared a common ancestor with vertebrates 684 million years ago, long before the spine evolved.

Lancelets have a very small genome (520 million base pairs) cut up into 19 tiny, gene-dense chromosomes. This genome was duplicated twice during the evolution of the fish that gave rise to animals with four limbs (tetrapods).

Read more: It looks like an anchovy fillet but this ancient creature helps us understand how DNA works[15]

We found that most emu microchromosomes aligned with a single lancelet chromosome, or sometimes with two. So the tiny lancelet chromosomes have survived almost unchanged as bird and reptile microchromosomes. The rest of the vertebrate genome is made up of copies of these chromosomes, diluted with enormous amounts of repetitive DNA.

This means that the tiny lancelet chromosomes, represented today by bird and reptile microchromosomes, were the original building blocks of vertebrate genomes.

Mammal genomes have gone mad

Some reptile and bird groups seem to have lost all or most of their microchromosomes. We show that, in these exceptional genomes, microchromosomes fused with each other (as in crocodiles) or with macrochromosomes (as in eagles and their relatives).

But mammals are the real exceptions. They have no microchromosomes. When we lined up emu sequence against the human and koala genomes (representing the marsupial and placental branches of the mammal family tree), we could find only small patches of homology with microchromosomes, scattered all over the genome.

However, in monotremes (egg-laying mammals that represent a third, and the oldest, branch of mammals), we saw that four platypus chromosomes are composed entirely of fused microchromosomes.

Genomes of lizards and snakes, birds, turtles and mammals (vertical lines show genome size) with DNA sequences lined up between chromosomes (coloured by size, microchromosomes in blue/green). Chromosomes have stayed the same in birds and reptiles but gone mad in mammals. Genome array by Hardip Patel, Paul Waters, Nick Lister. Author provided

This implies that microchromosomes fused together into large blocks in a reptile-like mammal ancestor more than 200 million years ago. The chromosomes stayed that way in monotremes. But in our own lineage (therian mammals that diverged into marsupials and placental mammals), blocks of micro- and macrochromosomes were rearranged, obliterating their origins.

After this rearrangement, marsupial chromosomes stayed quite conserved, 19 large blocks of genes being shifted around in simple ways. However, the chromosomes of placental mammals have gone quite mad, rearranging multiple times in many lineages. Such dizzying chromosome variation is unusual in vertebrates.

So the tiny microchromosomes of birds and reptiles are really the “normal” chromosomes rather than our big, fat mammal chromosomes that are scrambled and inflated by repetitive DNA sequences.

Read more https://theconversation.com/specks-of-dust-on-the-microscope-slide-no-we-are-looking-at-the-building-blocks-of-our-genome-168784

Times Magazine

Building a Strong Online Presence with Katoomba Web Design

Katoomba web design is more than just creating a website that looks good—it’s about building an online presence that reflects your brand, engages your audience, and drives results. For local businesses in the Blue Mountains, a well-designed website a...

September Sunset Polo

International Polo Tour To Bridge Historic Sport, Life-Changing Philanthropy, and Breath-Taking Beauty On Saturday, September 6th, history will be made as the International Polo Tour (IPT), a sports leader headquartered here in South Florida...

5 Ways Microsoft Fabric Simplifies Your Data Analytics Workflow

In today's data-driven world, businesses are constantly seeking ways to streamline their data analytics processes. The sheer volume and complexity of data can be overwhelming, often leading to bottlenecks and inefficiencies. Enter the innovative da...

7 Questions to Ask Before You Sign IT Support Companies in Sydney

Choosing an IT partner can feel like buying an insurance policy you hope you never need. The right choice keeps your team productive, your data safe, and your budget predictable. The wrong choice shows up as slow tickets, surprise bills, and risky sh...

Choosing the Right Legal Aid Lawyer in Sutherland Shire: Key Considerations

Legal aid services play an essential role in ensuring access to justice for all. For people in the Sutherland Shire who may not have the financial means to pay for private legal assistance, legal aid ensures that everyone has access to representa...

Watercolor vs. Oil vs. Digital: Which Medium Fits Your Pet's Personality?

When it comes to immortalizing your pet’s unique personality in art, choosing the right medium is essential. Each artistic medium, whether watercolor, oil, or digital, has distinct qualities that can bring out the spirit of your furry friend in dif...

The Times Features

NSW has a new fashion sector strategy – but a sustainable industry needs a federally legislated response

The New South Wales government recently announced the launch of the NSW Fashion Sector Strategy, 2025–28[1]. The strategy, developed in partnership with the Australian Fashion ...

From Garden to Gift: Why Roses Make the Perfect Present

Think back to the last time you gave or received flowers. Chances are, roses were part of the bunch, or maybe they were the whole bunch.   Roses tend to leave an impression. Even ...

Do I have insomnia? 5 reasons why you might not

Even a single night of sleep trouble can feel distressing and lonely. You toss and turn, stare at the ceiling, and wonder how you’ll cope tomorrow. No wonder many people star...

Wedding Photography Trends You Need to Know (Before You Regret Your Album)

Your wedding album should be a timeless keepsake, not something you cringe at years later. Trends may come and go, but choosing the right wedding photography approach ensures your ...

Can you say no to your doctor using an AI scribe?

Doctors’ offices were once private. But increasingly, artificial intelligence (AI) scribes (also known as digital scribes) are listening in. These tools can record and trans...

There’s a new vaccine for pneumococcal disease in Australia. Here’s what to know

The Australian government announced last week there’s a new vaccine[1] for pneumococcal disease on the National Immunisation Program for all children. This vaccine replaces pr...