The Times Australia
Fisher and Paykel Appliances
News From Asia

.

HKU Engineering researchers develop a soft colour-changing system that may lead to revolutionary optical devices

HONG KONG SAR - Media OutReach - 25 September 2023 - Researchers at the University of Hong Kong (HKU) designed an innovative pixalated soft colour-changing system called Morphable Concavity Array (MoCA).



(MoCA): a pixelated colour-changing soft system that mimics the colour-changing structure of butterfly wing.
(MoCA): a pixelated colour-changing soft system that mimics the colour-changing structure of butterfly wing.

Pixelated soft colour-changing systems are malleable structures that, by manipulating light, can change colour. They have applications in a wide range of industries, from medical bandages that change colour if there in a infection, to foldable screens on smartphones and tablets, as well as wearble technology where sensors are itegrated into the clothing fabric.

The research was co-directed by Professor Anderson Ho Cheung Shum from the Department of Mechanical Engineering at HKU, and Professor Mingzhu Li from the Institute of Chemistry, Chinese Academy of Sciences, and led by Dr Yi Pan from the Department of Mechanical Engineering at HKU.

MoCA fabricated by the HKU researchers is a thin (its thickness is about 3 human hairs) rubber-like structure that consists of two layers – the top layer is a photonic crystal elastomer actuator (PC-EA) film and the bottom one is a hole array – a lattice with regularly spaced round holes.

The PC-EA film itself consists of two layers – an elastomer layer (GPDMS) on top and and a hydrogel layer (pNIPAM) below.

If ethanol is added to the pNIPAM layer, it swells, and the resulting tension pulls the elastomer GPDMS layer downwards into the hole in the array, producing a dish-like concave shape called morphable concavity (MoC) that acts as a pixel. After the concavity is formed, the red light is blocked and the visible colour of the pixel changes from red to blue.

MoCA was inspired by the stuctures on butterfly wings called dual-colour micro-concavities that produce vibrant, irredescent colours.

Dual-colour micro-concavities are tiny pits which block certain wavelength of light, producing two different colors depending on the angle of light and the viewer's perspective. On butterfly wings these pits are arranged into a regular structures known as photonic crystals.

MoCA reproduces butterfly wing's photonic crystal, and is revolutionary as the first example of a pixelated colour-changing system that relies on flat and concave structures to produce different colours.

"The colour-changing strategy of MoCA is achieved by changing its local morphology, specifically by controlling the transition between 'flat' and 'concave' states. This sets MoCA apart from other pixelated colour-changing systems," said Dr Pan.

Another breakthrough is that the colour changes in pixels can be manipulated individually, because in MoCA each pixel is connected to an individual "piping system" through which ethanol is delivered.

"We use multi-channel microfluidics to introduce and remove solvents to manipulate MoCA, offering a complementary approach to the conventional electrochromic methods," explained Dr Pan.

MoCA can be used for counterfitting – for example concealing in products, such as clothing, patterns or QR codes that can only be visible under certain conditions. HKU team's long term goal, however, is to use the principles behind MoCA – soft matter and microfluidics, to construct optical devices that mimic, and surpass, the capabilities of compound eyes of insects.

Compound eyes contain multiple light-processing structures and offer several advantages over non-compound vision, such as wider field of vision and the ability to focus on multiple objects at the same time.

Deformation of the crystalline lens in the human eye allows us to focus on different distances, explains Professor Shum. MoCA's technology where individual units can be deformed - made change shape from flat to concave, can be harnessed to create multiple lenses that can change focus individually.

Crystalline lenses have their own adavantages such as greater focusing ability, higher resolution, and better colour perception.

"Optical devices with a combination of the compound eye and the crystalline lens, would not only imitate nature but transcend it," said professor Shum.

The results were published in Advanced Science as "Pixelating Responsive Structural Color via a Bioinspired Morphable Concavity Array (MoCA) Composed of 2D Photonic Crystal Elastomer Actuators."

Declaration: The use of materials from this paper (Yi Pan, Chang Li, Xiaoyu Hou, Zhenyu Yang, Mingzhu Li, Ho Cheung Shum. Pixelating Responsive Structural Color via a Bioinspired Morphable Concavity Array (MoCA) Composed of 2D Photonic Crystal Elastomer Actuators. Advanced Science, 2023, 10, 2300347.) follows the terms of its CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/) and all materials are used without any changes.

Link to the paper: https://onlinelibrary.wiley.com/doi/10.1002/advs.202300347

Hashtag: #HKU

The issuer is solely responsible for the content of this announcement.

Times Magazine

Seven in Ten Australian Workers Say Employers Are Failing to Prepare Them for AI Future

As artificial intelligence (AI) accelerates across industries, a growing number of Australian work...

Mapping for Trucks: More Than Directions, It’s Optimisation

Daniel Antonello, General Manager Oceania, HERE Technologies At the end of June this year, Hampden ...

Can bigger-is-better ‘scaling laws’ keep AI improving forever? History says we can’t be too sure

OpenAI chief executive Sam Altman – perhaps the most prominent face of the artificial intellig...

A backlash against AI imagery in ads may have begun as brands promote ‘human-made’

In a wave of new ads, brands like Heineken, Polaroid and Cadbury have started hating on artifici...

Home batteries now four times the size as new installers enter the market

Australians are investing in larger home battery set ups than ever before with data showing the ...

Q&A with Freya Alexander – the young artist transforming co-working spaces into creative galleries

As the current Artist in Residence at Hub Australia, Freya Alexander is bringing colour and creativi...

The Times Features

Why a Holiday or Short Break in the Noosa Region Is an Ideal Getaway

Few Australian destinations capture the imagination quite like Noosa. With its calm turquoise ba...

How Dynamic Pricing in Accommodation — From Caravan Parks to Hotels — Affects Holiday Affordability

Dynamic pricing has quietly become one of the most influential forces shaping the cost of an Aus...

The rise of chatbot therapists: Why AI cannot replace human care

Some are dubbing AI as the fourth industrial revolution, with the sweeping changes it is propellin...

Australians Can Now Experience The World of Wicked Across Universal Studios Singapore and Resorts World Sentosa

This holiday season, Resorts World Sentosa (RWS), in partnership with Universal Pictures, Sentosa ...

Mineral vs chemical sunscreens? Science shows the difference is smaller than you think

“Mineral-only” sunscreens are making huge inroads[1] into the sunscreen market, driven by fears of “...

Here’s what new debt-to-income home loan caps mean for banks and borrowers

For the first time ever, the Australian banking regulator has announced it will impose new debt-...

Why the Mortgage Industry Needs More Women (And What We're Actually Doing About It)

I've been in fintech and the mortgage industry for about a year and a half now. My background is i...

Inflation jumps in October, adding to pressure on government to make budget savings

Annual inflation rose[1] to a 16-month high of 3.8% in October, adding to pressure on the govern...

Transforming Addiction Treatment Marketing Across Australasia & Southeast Asia

In a competitive and highly regulated space like addiction treatment, standing out online is no sm...